dsumkbn2.js (2343B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var abs = require( '@stdlib/math/base/special/abs' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 34 * 35 * ## References 36 * 37 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {Float64Array} x - input array 41 * @param {integer} stride - stride length 42 * @returns {number} sum 43 * 44 * @example 45 * var Float64Array = require( '@stdlib/array/float64' ); 46 * 47 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 48 * var N = x.length; 49 * 50 * var v = dsumkbn2( N, x, 1 ); 51 * // returns 1.0 52 */ 53 function dsumkbn2( N, x, stride ) { 54 var sum; 55 var ccs; 56 var ix; 57 var cs; 58 var cc; 59 var v; 60 var t; 61 var c; 62 var i; 63 64 if ( N <= 0 ) { 65 return 0.0; 66 } 67 if ( N === 1 || stride === 0 ) { 68 return x[ 0 ]; 69 } 70 if ( stride < 0 ) { 71 ix = (1-N) * stride; 72 } else { 73 ix = 0; 74 } 75 sum = 0.0; 76 ccs = 0.0; // second order correction term for lost low order bits 77 cs = 0.0; // first order correction term for lost low order bits 78 for ( i = 0; i < N; i++ ) { 79 v = x[ ix ]; 80 t = sum + v; 81 if ( abs( sum ) >= abs( v ) ) { 82 c = (sum-t) + v; 83 } else { 84 c = (v-t) + sum; 85 } 86 sum = t; 87 t = cs + c; 88 if ( abs( cs ) >= abs( c ) ) { 89 cc = (cs-t) + c; 90 } else { 91 cc = (c-t) + cs; 92 } 93 cs = t; 94 ccs += cc; 95 ix += stride; 96 } 97 return sum + cs + ccs; 98 } 99 100 101 // EXPORTS // 102 103 module.exports = dsumkbn2;