dsumkbn.js (2093B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var abs = require( '@stdlib/math/base/special/abs' ); 24 25 26 // MAIN // 27 28 /** 29 * Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm. 30 * 31 * ## Method 32 * 33 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 34 * 35 * ## References 36 * 37 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 38 * 39 * @param {PositiveInteger} N - number of indexed elements 40 * @param {Float64Array} x - input array 41 * @param {integer} stride - stride length 42 * @returns {number} sum 43 * 44 * @example 45 * var Float64Array = require( '@stdlib/array/float64' ); 46 * 47 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); 48 * var N = x.length; 49 * 50 * var v = dsumkbn( N, x, 1 ); 51 * // returns 1.0 52 */ 53 function dsumkbn( N, x, stride ) { 54 var sum; 55 var ix; 56 var v; 57 var t; 58 var c; 59 var i; 60 61 if ( N <= 0 ) { 62 return 0.0; 63 } 64 if ( N === 1 || stride === 0 ) { 65 return x[ 0 ]; 66 } 67 if ( stride < 0 ) { 68 ix = (1-N) * stride; 69 } else { 70 ix = 0; 71 } 72 sum = 0.0; 73 c = 0.0; 74 for ( i = 0; i < N; i++ ) { 75 v = x[ ix ]; 76 t = sum + v; 77 if ( abs( sum ) >= abs( v ) ) { 78 c += (sum-t) + v; 79 } else { 80 c += (v-t) + sum; 81 } 82 sum = t; 83 ix += stride; 84 } 85 return sum + c; 86 } 87 88 89 // EXPORTS // 90 91 module.exports = dsumkbn;