time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dsumkbn.js (2093B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var abs = require( '@stdlib/math/base/special/abs' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.
     30 *
     31 * ## Method
     32 *
     33 * -   This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
     34 *
     35 * ## References
     36 *
     37 * -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
     38 *
     39 * @param {PositiveInteger} N - number of indexed elements
     40 * @param {Float64Array} x - input array
     41 * @param {integer} stride - stride length
     42 * @returns {number} sum
     43 *
     44 * @example
     45 * var Float64Array = require( '@stdlib/array/float64' );
     46 *
     47 * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
     48 * var N = x.length;
     49 *
     50 * var v = dsumkbn( N, x, 1 );
     51 * // returns 1.0
     52 */
     53 function dsumkbn( N, x, stride ) {
     54 	var sum;
     55 	var ix;
     56 	var v;
     57 	var t;
     58 	var c;
     59 	var i;
     60 
     61 	if ( N <= 0 ) {
     62 		return 0.0;
     63 	}
     64 	if ( N === 1 || stride === 0 ) {
     65 		return x[ 0 ];
     66 	}
     67 	if ( stride < 0 ) {
     68 		ix = (1-N) * stride;
     69 	} else {
     70 		ix = 0;
     71 	}
     72 	sum = 0.0;
     73 	c = 0.0;
     74 	for ( i = 0; i < N; i++ ) {
     75 		v = x[ ix ];
     76 		t = sum + v;
     77 		if ( abs( sum ) >= abs( v ) ) {
     78 			c += (sum-t) + v;
     79 		} else {
     80 			c += (v-t) + sum;
     81 		}
     82 		sum = t;
     83 		ix += stride;
     84 	}
     85 	return sum + c;
     86 }
     87 
     88 
     89 // EXPORTS //
     90 
     91 module.exports = dsumkbn;