ndarray.js (2114B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // VARIABLES // 22 23 var M = 6; 24 25 26 // MAIN // 27 28 /** 29 * Computes the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result. 30 * 31 * @param {PositiveInteger} N - number of indexed elements 32 * @param {Float32Array} x - input array 33 * @param {integer} stride - stride length 34 * @param {NonNegativeInteger} offset - starting index 35 * @returns {number} sum 36 * 37 * @example 38 * var Float32Array = require( '@stdlib/array/float32' ); 39 * var floor = require( '@stdlib/math/base/special/floor' ); 40 * 41 * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); 42 * var N = floor( x.length / 2 ); 43 * 44 * var v = dssumors( N, x, 2, 1 ); 45 * // returns 5.0 46 */ 47 function dssumors( N, x, stride, offset ) { 48 var sum; 49 var ix; 50 var m; 51 var i; 52 53 sum = 0.0; 54 if ( N <= 0 ) { 55 return sum; 56 } 57 if ( N === 1 || stride === 0 ) { 58 return x[ offset ]; 59 } 60 ix = offset; 61 62 // If the stride is equal to `1`, use unrolled loops... 63 if ( stride === 1 ) { 64 m = N % M; 65 66 // If we have a remainder, run a clean-up loop... 67 if ( m > 0 ) { 68 for ( i = 0; i < m; i++ ) { 69 sum += x[ ix ]; 70 ix += stride; 71 } 72 } 73 if ( N < M ) { 74 return sum; 75 } 76 for ( i = m; i < N; i += M ) { 77 sum += x[ix] + x[ix+1] + x[ix+2] + x[ix+3] + x[ix+4] + x[ix+5]; 78 ix += M; 79 } 80 return sum; 81 } 82 for ( i = 0; i < N; i++ ) { 83 sum += x[ ix ]; 84 ix += stride; 85 } 86 return sum; 87 } 88 89 90 // EXPORTS // 91 92 module.exports = dssumors;