time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dssumors.js (1960B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // VARIABLES //
     22 
     23 var M = 6;
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the sum of single-precision floating-point strided array elements using ordinary recursive summation with extended accumulation and returning an extended precision result.
     30 *
     31 * @param {PositiveInteger} N - number of indexed elements
     32 * @param {Float32Array} x - input array
     33 * @param {integer} stride - stride length
     34 * @returns {number} sum
     35 *
     36 * @example
     37 * var Float32Array = require( '@stdlib/array/float32' );
     38 *
     39 * var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
     40 * var N = x.length;
     41 *
     42 * var v = dssumors( N, x, 1 );
     43 * // returns 1.0
     44 */
     45 function dssumors( N, x, stride ) {
     46 	var sum;
     47 	var ix;
     48 	var m;
     49 	var i;
     50 
     51 	sum = 0.0;
     52 	if ( N <= 0 ) {
     53 		return sum;
     54 	}
     55 	if ( N === 1 || stride === 0 ) {
     56 		return x[ 0 ];
     57 	}
     58 	// If the stride is equal to `1`, use unrolled loops...
     59 	if ( stride === 1 ) {
     60 		m = N % M;
     61 
     62 		// If we have a remainder, run a clean-up loop...
     63 		if ( m > 0 ) {
     64 			for ( i = 0; i < m; i++ ) {
     65 				sum += x[ i ];
     66 			}
     67 		}
     68 		if ( N < M ) {
     69 			return sum;
     70 		}
     71 		for ( i = m; i < N; i += M ) {
     72 			sum += x[i] + x[i+1] + x[i+2] + x[i+3] + x[i+4] + x[i+5];
     73 		}
     74 		return sum;
     75 	}
     76 	if ( stride < 0 ) {
     77 		ix = (1-N) * stride;
     78 	} else {
     79 		ix = 0;
     80 	}
     81 	for ( i = 0; i < N; i++ ) {
     82 		sum += x[ ix ];
     83 		ix += stride;
     84 	}
     85 	return sum;
     86 }
     87 
     88 
     89 // EXPORTS //
     90 
     91 module.exports = dssumors;