dsnansumpw.js (2238B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); 24 var sum = require( './ndarray.js' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result. 31 * 32 * ## Method 33 * 34 * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`. 35 * 36 * ## References 37 * 38 * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float32Array} x - input array 42 * @param {integer} stride - stride length 43 * @returns {number} sum 44 * 45 * @example 46 * var Float32Array = require( '@stdlib/array/float32' ); 47 * 48 * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); 49 * var N = x.length; 50 * 51 * var v = dsnansumpw( N, x, 1 ); 52 * // returns 1.0 53 */ 54 function dsnansumpw( N, x, stride ) { 55 var ix; 56 var s; 57 var i; 58 59 if ( N <= 0 ) { 60 return 0.0; 61 } 62 if ( N === 1 || stride === 0 ) { 63 if ( isnanf( x[ 0 ] ) ) { 64 return 0.0; 65 } 66 return x[ 0 ]; 67 } 68 if ( stride < 0 ) { 69 ix = (1-N) * stride; 70 } else { 71 ix = 0; 72 } 73 if ( N < 8 ) { 74 // Use simple summation... 75 s = 0.0; 76 for ( i = 0; i < N; i++ ) { 77 if ( isnanf( x[ ix ] ) === false ) { 78 s += x[ ix ]; 79 } 80 ix += stride; 81 } 82 return s; 83 } 84 return sum( N, x, stride, ix ); 85 } 86 87 88 // EXPORTS // 89 90 module.exports = dsnansumpw;