dnansumkbn.js (2281B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 35 * 36 * ## References 37 * 38 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float64Array} x - input array 42 * @param {integer} stride - stride length 43 * @returns {number} sum 44 * 45 * @example 46 * var Float64Array = require( '@stdlib/array/float64' ); 47 * 48 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 49 * var N = x.length; 50 * 51 * var v = dnansumkbn( N, x, 1 ); 52 * // returns 1.0 53 */ 54 function dnansumkbn( N, x, stride ) { 55 var sum; 56 var ix; 57 var v; 58 var t; 59 var c; 60 var i; 61 62 if ( N <= 0 ) { 63 return 0.0; 64 } 65 if ( N === 1 || stride === 0 ) { 66 if ( isnan( x[ 0 ] ) ) { 67 return 0.0; 68 } 69 return x[ 0 ]; 70 } 71 if ( stride < 0 ) { 72 ix = (1-N) * stride; 73 } else { 74 ix = 0; 75 } 76 sum = 0.0; 77 c = 0.0; 78 for ( i = 0; i < N; i++ ) { 79 v = x[ ix ]; 80 if ( isnan( v ) === false ) { 81 t = sum + v; 82 if ( abs( sum ) >= abs( v ) ) { 83 c += (sum-t) + v; 84 } else { 85 c += (v-t) + sum; 86 } 87 sum = t; 88 } 89 ix += stride; 90 } 91 return sum + c; 92 } 93 94 95 // EXPORTS // 96 97 module.exports = dnansumkbn;