time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

sumpw.js (4678B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var floor = require( '@stdlib/math/base/special/floor' );
     25 
     26 
     27 // VARIABLES //
     28 
     29 // Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):
     30 var BLOCKSIZE = 128;
     31 
     32 
     33 // MAIN //
     34 
     35 /**
     36 * Computes the sum of a double-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation.
     37 *
     38 * ## Method
     39 *
     40 * -   This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
     41 *
     42 * ## References
     43 *
     44 * -   Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
     45 *
     46 * @private
     47 * @param {PositiveInteger} N - number of indexed elements
     48 * @param {Float64Array} x - input array
     49 * @param {integer} strideX - `x` stride length
     50 * @param {NonNegativeInteger} offsetX - `x` starting index
     51 * @param {Float64Array} out - two-element output array whose first element is the accumulated sum and whose second element is the accumulated number of summed values
     52 * @param {integer} strideOut - `out` stride length
     53 * @param {NonNegativeInteger} offsetOut - `out` starting index
     54 * @returns {Float64Array} output array
     55 *
     56 * @example
     57 * var Float64Array = require( '@stdlib/array/float64' );
     58 * var floor = require( '@stdlib/math/base/special/floor' );
     59 *
     60 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
     61 * var N = floor( x.length / 2 );
     62 *
     63 * var out = new Float64Array( [ 0.0, 0 ] );
     64 * var v = sumpw( N, x, 2, 1, out, 1, 0 );
     65 * // returns <Float64Array>[ 5.0, 4 ]
     66 */
     67 function sumpw( N, x, strideX, offsetX, out, strideOut, offsetOut ) {
     68 	var ix;
     69 	var io;
     70 	var s0;
     71 	var s1;
     72 	var s2;
     73 	var s3;
     74 	var s4;
     75 	var s5;
     76 	var s6;
     77 	var s7;
     78 	var M;
     79 	var s;
     80 	var n;
     81 	var v;
     82 	var i;
     83 
     84 	if ( N <= 0 ) {
     85 		return out;
     86 	}
     87 	ix = offsetX;
     88 	io = offsetOut;
     89 	if ( N === 1 || strideX === 0 ) {
     90 		if ( isnan( x[ ix ] ) ) {
     91 			return out;
     92 		}
     93 		out[ io ] += x[ ix ];
     94 		out[ io+strideOut ] += 1;
     95 		return out;
     96 	}
     97 	if ( N < 8 ) {
     98 		// Use simple summation...
     99 		s = 0.0;
    100 		n = 0;
    101 		for ( i = 0; i < N; i++ ) {
    102 			v = x[ ix ];
    103 			if ( v === v ) {
    104 				s += v;
    105 				n += 1;
    106 			}
    107 			ix += strideX;
    108 		}
    109 		out[ io ] += s;
    110 		out[ io+strideOut ] += n;
    111 		return out;
    112 	}
    113 	if ( N <= BLOCKSIZE ) {
    114 		// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
    115 		s0 = 0.0;
    116 		s1 = 0.0;
    117 		s2 = 0.0;
    118 		s3 = 0.0;
    119 		s4 = 0.0;
    120 		s5 = 0.0;
    121 		s6 = 0.0;
    122 		s7 = 0.0;
    123 		n = 0;
    124 
    125 		M = N % 8;
    126 		for ( i = 0; i < N-M; i += 8 ) {
    127 			v = x[ ix ];
    128 			if ( v === v ) {
    129 				s0 += v;
    130 				n += 1;
    131 			}
    132 			ix += strideX;
    133 			v = x[ ix ];
    134 			if ( v === v ) {
    135 				s1 += v;
    136 				n += 1;
    137 			}
    138 			ix += strideX;
    139 			v = x[ ix ];
    140 			if ( v === v ) {
    141 				s2 += v;
    142 				n += 1;
    143 			}
    144 			ix += strideX;
    145 			v = x[ ix ];
    146 			if ( v === v ) {
    147 				s3 += v;
    148 				n += 1;
    149 			}
    150 			ix += strideX;
    151 			v = x[ ix ];
    152 			if ( v === v ) {
    153 				s4 += v;
    154 				n += 1;
    155 			}
    156 			ix += strideX;
    157 			v = x[ ix ];
    158 			if ( v === v ) {
    159 				s5 += v;
    160 				n += 1;
    161 			}
    162 			ix += strideX;
    163 			v = x[ ix ];
    164 			if ( v === v ) {
    165 				s6 += v;
    166 				n += 1;
    167 			}
    168 			ix += strideX;
    169 			v = x[ ix ];
    170 			if ( v === v ) {
    171 				s7 += v;
    172 				n += 1;
    173 			}
    174 			ix += strideX;
    175 		}
    176 		// Pairwise sum the accumulators:
    177 		s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
    178 
    179 		// Clean-up loop...
    180 		for ( i; i < N; i++ ) {
    181 			v = x[ ix ];
    182 			if ( v === v ) {
    183 				s += v;
    184 				n += 1;
    185 			}
    186 			ix += strideX;
    187 		}
    188 		out[ io ] += s;
    189 		out[ io+strideOut ] += n;
    190 		return out;
    191 	}
    192 	// Recurse by dividing by two, but avoiding non-multiples of unroll factor...
    193 	n = floor( N/2 );
    194 	n -= n % 8;
    195 	sumpw( n, x, strideX, ix, out, strideOut, offsetOut );
    196 	sumpw( N-n, x, strideX, ix+(n*strideX), out, strideOut, offsetOut );
    197 	return out;
    198 }
    199 
    200 
    201 // EXPORTS //
    202 
    203 module.exports = sumpw;