time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (2323B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
     30 *
     31 * @param {PositiveInteger} N - number of indexed elements
     32 * @param {Float64Array} x - input array
     33 * @param {integer} strideX - `x` stride length
     34 * @param {NonNegativeInteger} offsetX - `x` starting index
     35 * @param {Float64Array} out - output array
     36 * @param {integer} strideOut - `out` stride length
     37 * @param {NonNegativeInteger} offsetOut - `out` starting index
     38 * @returns {Float64Array} output array
     39 *
     40 * @example
     41 * var Float64Array = require( '@stdlib/array/float64' );
     42 * var floor = require( '@stdlib/math/base/special/floor' );
     43 *
     44 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
     45 * var out = new Float64Array( 2 );
     46 *
     47 * var N = floor( x.length / 2 );
     48 *
     49 * var v = dnannsumors( N, x, 2, 1, out, 1, 0 );
     50 * // returns <Float64Array>[ 5.0, 4 ]
     51 */
     52 function dnannsumors( N, x, strideX, offsetX, out, strideOut, offsetOut ) {
     53 	var sum;
     54 	var ix;
     55 	var io;
     56 	var n;
     57 	var i;
     58 
     59 	ix = offsetX;
     60 	io = offsetOut;
     61 
     62 	sum = 0.0;
     63 	if ( N <= 0 ) {
     64 		out[ io ] = sum;
     65 		out[ io+strideOut ] = 0;
     66 		return out;
     67 	}
     68 	if ( N === 1 || strideX === 0 ) {
     69 		if ( isnan( x[ ix ] ) ) {
     70 			out[ io ] = sum;
     71 			out[ io+strideOut ] = 0;
     72 			return out;
     73 		}
     74 		out[ io ] = x[ ix ];
     75 		out[ io+strideOut ] = 1;
     76 		return out;
     77 	}
     78 	n = 0;
     79 	for ( i = 0; i < N; i++ ) {
     80 		if ( isnan( x[ ix ] ) === false ) {
     81 			sum += x[ ix ];
     82 			n += 1;
     83 		}
     84 		ix += strideX;
     85 	}
     86 	out[ io ] = sum;
     87 	out[ io+strideOut ] = n;
     88 	return out;
     89 }
     90 
     91 
     92 // EXPORTS //
     93 
     94 module.exports = dnannsumors;