time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dnannsumors.js (2158B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 
     25 
     26 // MAIN //
     27 
     28 /**
     29 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
     30 *
     31 * @param {PositiveInteger} N - number of indexed elements
     32 * @param {Float64Array} x - input array
     33 * @param {integer} strideX - `x` stride length
     34 * @param {Float64Array} out - output array
     35 * @param {integer} strideOut - `out` stride length
     36 * @returns {Float64Array} output array
     37 *
     38 * @example
     39 * var Float64Array = require( '@stdlib/array/float64' );
     40 *
     41 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
     42 * var out = new Float64Array( 2 );
     43 *
     44 * var v = dnannsumors( x.length, x, 1, out, 1 );
     45 * // returns <Float64Array>[ 1.0, 3 ]
     46 */
     47 function dnannsumors( N, x, strideX, out, strideOut ) {
     48 	var sum;
     49 	var ix;
     50 	var io;
     51 	var n;
     52 	var i;
     53 
     54 	if ( strideX < 0 ) {
     55 		ix = (1-N) * strideX;
     56 	} else {
     57 		ix = 0;
     58 	}
     59 	if ( strideOut < 0 ) {
     60 		io = -strideOut;
     61 	} else {
     62 		io = 0;
     63 	}
     64 	sum = 0.0;
     65 	if ( N <= 0 ) {
     66 		out[ io ] = sum;
     67 		out[ io+strideOut ] = 0;
     68 		return out;
     69 	}
     70 	if ( N === 1 || strideX === 0 ) {
     71 		if ( isnan( x[ ix ] ) ) {
     72 			out[ io ] = sum;
     73 			out[ io+strideOut ] = 0;
     74 			return out;
     75 		}
     76 		out[ io ] = x[ ix ];
     77 		out[ io+strideOut ] = 1;
     78 		return out;
     79 	}
     80 	n = 0;
     81 	for ( i = 0; i < N; i++ ) {
     82 		if ( isnan( x[ ix ] ) === false ) {
     83 			sum += x[ ix ];
     84 			n += 1;
     85 		}
     86 		ix += strideX;
     87 	}
     88 	out[ io ] = sum;
     89 	out[ io+strideOut ] = n;
     90 	return out;
     91 }
     92 
     93 
     94 // EXPORTS //
     95 
     96 module.exports = dnannsumors;