time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (5562B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2020 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # dnannsumors
     22 
     23 > Calculate the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
     24 
     25 <section class="intro">
     26 
     27 </section>
     28 
     29 <!-- /.intro -->
     30 
     31 <section class="usage">
     32 
     33 ## Usage
     34 
     35 ```javascript
     36 var dnannsumors = require( '@stdlib/blas/ext/base/dnannsumors' );
     37 ```
     38 
     39 #### dnannsumors( N, x, strideX, out, strideOut )
     40 
     41 Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation.
     42 
     43 ```javascript
     44 var Float64Array = require( '@stdlib/array/float64' );
     45 
     46 var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
     47 var out = new Float64Array( 2 );
     48 
     49 var v = dnannsumors( x.length, x, 1, out, 1 );
     50 // returns <Float64Array>[ 1.0, 3 ]
     51 ```
     52 
     53 The function has the following parameters:
     54 
     55 -   **N**: number of indexed elements.
     56 -   **x**: input [`Float64Array`][@stdlib/array/float64].
     57 -   **strideX**: index increment for `x`.
     58 -   **out**: output [`Float64Array`][@stdlib/array/float64] whose first element is the sum and whose second element is the number of non-NaN elements.
     59 -   **strideOut**: index increment for `out`.
     60 
     61 The `N` and `stride` parameters determine which elements are accessed at runtime. For example, to compute the sum of every other element in `x`,
     62 
     63 ```javascript
     64 var Float64Array = require( '@stdlib/array/float64' );
     65 var floor = require( '@stdlib/math/base/special/floor' );
     66 
     67 var x = new Float64Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
     68 var out = new Float64Array( 2 );
     69 var N = floor( x.length / 2 );
     70 
     71 var v = dnannsumors( N, x, 2, out, 1 );
     72 // returns <Float64Array>[ 5.0, 2 ]
     73 ```
     74 
     75 Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
     76 
     77 <!-- eslint-disable stdlib/capitalized-comments -->
     78 
     79 ```javascript
     80 var Float64Array = require( '@stdlib/array/float64' );
     81 var floor = require( '@stdlib/math/base/special/floor' );
     82 
     83 var x0 = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     84 var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
     85 
     86 var out0 = new Float64Array( 4 );
     87 var out1 = new Float64Array( out0.buffer, out0.BYTES_PER_ELEMENT*2 ); // start at 3rd element
     88 
     89 var N = floor( x0.length / 2 );
     90 
     91 var v = dnannsumors( N, x1, 2, out1, 1 );
     92 // returns <Float64Array>[ 5.0, 4 ]
     93 ```
     94 
     95 #### dnannsumors.ndarray( N, x, strideX, offsetX, out, strideOut, offsetOut )
     96 
     97 Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.
     98 
     99 ```javascript
    100 var Float64Array = require( '@stdlib/array/float64' );
    101 
    102 var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
    103 var out = new Float64Array( 2 );
    104 
    105 var v = dnannsumors.ndarray( x.length, x, 1, 0, out, 1, 0 );
    106 // returns <Float64Array>[ 1.0, 3 ]
    107 ```
    108 
    109 The function has the following additional parameters:
    110 
    111 -   **offsetX**: starting index for `x`.
    112 -   **offsetOut**: starting index for `out`.
    113 
    114 While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
    115 
    116 ```javascript
    117 var Float64Array = require( '@stdlib/array/float64' );
    118 var floor = require( '@stdlib/math/base/special/floor' );
    119 
    120 var x = new Float64Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    121 var out = new Float64Array( 4 );
    122 var N = floor( x.length / 2 );
    123 
    124 var v = dnannsumors.ndarray( N, x, 2, 1, out, 2, 1 );
    125 // returns <Float64Array>[ 0.0, 5.0, 0.0, 4 ]
    126 ```
    127 
    128 </section>
    129 
    130 <!-- /.usage -->
    131 
    132 <section class="notes">
    133 
    134 ## Notes
    135 
    136 -   If `N <= 0`, both functions return a sum equal to `0.0`.
    137 -   Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
    138 
    139 </section>
    140 
    141 <!-- /.notes -->
    142 
    143 <section class="examples">
    144 
    145 ## Examples
    146 
    147 <!-- eslint no-undef: "error" -->
    148 
    149 ```javascript
    150 var randu = require( '@stdlib/random/base/randu' );
    151 var round = require( '@stdlib/math/base/special/round' );
    152 var Float64Array = require( '@stdlib/array/float64' );
    153 var dnannsumors = require( '@stdlib/blas/ext/base/dnannsumors' );
    154 
    155 var x;
    156 var i;
    157 
    158 x = new Float64Array( 10 );
    159 for ( i = 0; i < x.length; i++ ) {
    160     if ( randu() < 0.2 ) {
    161         x[ i ] = NaN;
    162     } else {
    163         x[ i ] = round( randu()*100.0 );
    164     }
    165 }
    166 console.log( x );
    167 
    168 var out = new Float64Array( 2 );
    169 dnannsumors( x.length, x, 1, out, 1 );
    170 console.log( out );
    171 ```
    172 
    173 </section>
    174 
    175 <!-- /.examples -->
    176 
    177 <section class="links">
    178 
    179 [@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
    180 
    181 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
    182 
    183 </section>
    184 
    185 <!-- /.links -->