dnannsumkbn2.c (2454B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 #include "stdlib/blas/ext/base/dnannsumkbn2.h" 20 #include "stdlib/math/base/assert/is_nan.h" 21 #include <stdint.h> 22 #include <math.h> 23 24 /** 25 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. 26 * 27 * ## Method 28 * 29 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 30 * 31 * ## References 32 * 33 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 34 * 35 * @param N number of indexed elements 36 * @param X input array 37 * @param stride stride length 38 * @param n pointer for storing the number of non-NaN elements 39 * @return output value 40 */ 41 double stdlib_strided_dnannsumkbn2( const int64_t N, const double *X, const int64_t stride, int64_t *n ) { 42 double sum; 43 double ccs; 44 int64_t ix; 45 int64_t i; 46 double cs; 47 double cc; 48 double v; 49 double t; 50 double c; 51 52 sum = 0.0; 53 *n = 0; 54 if ( N <= 0 ) { 55 return sum; 56 } 57 if ( N == 1 || stride == 0 ) { 58 if ( stdlib_base_is_nan( X[ 0 ] ) ) { 59 return sum; 60 } 61 *n += 1; 62 return X[ 0 ]; 63 } 64 if ( stride < 0 ) { 65 ix = (1-N) * stride; 66 } else { 67 ix = 0; 68 } 69 ccs = 0.0; // second order correction term for lost lower order bits 70 cs = 0.0; // first order correction term for lost low order bits 71 for ( i = 0; i < N; i++ ) { 72 v = X[ ix ]; 73 if ( !stdlib_base_is_nan( v ) ) { 74 t = sum + v; 75 if ( fabs( sum ) >= fabs( v ) ) { 76 c = (sum-t) + v; 77 } else { 78 c = (v-t) + sum; 79 } 80 sum = t; 81 t = cs + c; 82 if ( fabs( cs ) >= fabs( c ) ) { 83 cc = (cs-t) + c; 84 } else { 85 cc = (c-t) + cs; 86 } 87 cs = t; 88 ccs += cc; 89 *n += 1; 90 } 91 ix += stride; 92 } 93 return sum + cs + ccs; 94 }