ndarray.js (3181B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 35 * 36 * ## References 37 * 38 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float64Array} x - input array 42 * @param {integer} strideX - `x` stride length 43 * @param {NonNegativeInteger} offsetX - `x` starting index 44 * @param {Float64Array} out - output array 45 * @param {integer} strideOut - `out` stride length 46 * @param {NonNegativeInteger} offsetOut - `out` starting index 47 * @returns {Float64Array} output array 48 * 49 * @example 50 * var Float64Array = require( '@stdlib/array/float64' ); 51 * var floor = require( '@stdlib/math/base/special/floor' ); 52 * 53 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 54 * var out = new Float64Array( 2 ); 55 * 56 * var N = floor( x.length / 2 ); 57 * 58 * var v = dnannsumkbn2( N, x, 2, 1, out, 1, 0 ); 59 * // returns <Float64Array>[ 5.0, 4 ] 60 */ 61 function dnannsumkbn2( N, x, strideX, offsetX, out, strideOut, offsetOut ) { 62 var sum; 63 var ccs; 64 var cs; 65 var cc; 66 var ix; 67 var io; 68 var v; 69 var t; 70 var c; 71 var n; 72 var i; 73 74 ix = offsetX; 75 io = offsetOut; 76 77 sum = 0.0; 78 if ( N <= 0 ) { 79 out[ io ] = sum; 80 out[ io+strideOut ] = 0; 81 return out; 82 } 83 if ( N === 1 || strideX === 0 ) { 84 if ( isnan( x[ ix ] ) ) { 85 out[ io ] = sum; 86 out[ io+strideOut ] = 0; 87 return out; 88 } 89 out[ io ] = x[ ix ]; 90 out[ io+strideOut ] = 1; 91 return out; 92 } 93 ccs = 0.0; // second order correction term for lost low order bits 94 cs = 0.0; // first order correction term for lost low order bits 95 n = 0; 96 for ( i = 0; i < N; i++ ) { 97 v = x[ ix ]; 98 if ( isnan( v ) === false ) { 99 t = sum + v; 100 if ( abs( sum ) >= abs( v ) ) { 101 c = (sum-t) + v; 102 } else { 103 c = (v-t) + sum; 104 } 105 sum = t; 106 t = cs + c; 107 if ( abs( cs ) >= abs( c ) ) { 108 cc = (cs-t) + c; 109 } else { 110 cc = (c-t) + cs; 111 } 112 cs = t; 113 ccs += cc; 114 n += 1; 115 } 116 ix += strideX; 117 } 118 out[ io ] = sum + cs + ccs; 119 out[ io+strideOut ] = n; 120 return out; 121 } 122 123 124 // EXPORTS // 125 126 module.exports = dnannsumkbn2;