dnannsumkbn2.js (3016B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses a second-order iterative Kahan–Babuška algorithm, as described by Klein (2005). 35 * 36 * ## References 37 * 38 * - Klein, Andreas. 2005. "A Generalized Kahan-Babuška-Summation-Algorithm." _Computing_ 76 (3): 279–93. doi:[10.1007/s00607-005-0139-x](https://doi.org/10.1007/s00607-005-0139-x). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float64Array} x - input array 42 * @param {integer} strideX - `x` stride length 43 * @param {Float64Array} out - output array 44 * @param {integer} strideOut - `out` stride length 45 * @returns {Float64Array} output array 46 * 47 * @example 48 * var Float64Array = require( '@stdlib/array/float64' ); 49 * 50 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 51 * var out = new Float64Array( 2 ); 52 * 53 * var v = dnannsumkbn2( x.length, x, 1, out, 1 ); 54 * // returns <Float64Array>[ 1.0, 3 ] 55 */ 56 function dnannsumkbn2( N, x, strideX, out, strideOut ) { 57 var sum; 58 var ccs; 59 var cs; 60 var cc; 61 var ix; 62 var io; 63 var v; 64 var t; 65 var c; 66 var n; 67 var i; 68 69 if ( strideX < 0 ) { 70 ix = (1-N) * strideX; 71 } else { 72 ix = 0; 73 } 74 if ( strideOut < 0 ) { 75 io = -strideOut; 76 } else { 77 io = 0; 78 } 79 sum = 0.0; 80 if ( N <= 0 ) { 81 out[ io ] = sum; 82 out[ io+strideOut ] = 0; 83 return out; 84 } 85 if ( N === 1 || strideX === 0 ) { 86 if ( isnan( x[ ix ] ) ) { 87 out[ io ] = sum; 88 out[ io+strideOut ] = 0; 89 return out; 90 } 91 out[ io ] = x[ ix ]; 92 out[ io+strideOut ] = 1; 93 return out; 94 } 95 ccs = 0.0; // second order correction term for lost low order bits 96 cs = 0.0; // first order correction term for lost low order bits 97 n = 0; 98 for ( i = 0; i < N; i++ ) { 99 v = x[ ix ]; 100 if ( isnan( v ) === false ) { 101 t = sum + v; 102 if ( abs( sum ) >= abs( v ) ) { 103 c = (sum-t) + v; 104 } else { 105 c = (v-t) + sum; 106 } 107 sum = t; 108 t = cs + c; 109 if ( abs( cs ) >= abs( c ) ) { 110 cc = (cs-t) + c; 111 } else { 112 cc = (c-t) + cs; 113 } 114 cs = t; 115 ccs += cc; 116 n += 1; 117 } 118 ix += strideX; 119 } 120 out[ io ] = sum + cs + ccs; 121 out[ io+strideOut ] = n; 122 return out; 123 } 124 125 126 // EXPORTS // 127 128 module.exports = dnannsumkbn2;