dnannsumkbn.c (2184B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 #include "stdlib/blas/ext/base/dnannsumkbn.h" 20 #include "stdlib/math/base/assert/is_nan.h" 21 #include <stdint.h> 22 #include <math.h> 23 24 /** 25 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 26 * 27 * ## Method 28 * 29 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 30 * 31 * ## References 32 * 33 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 34 * 35 * @param N number of indexed elements 36 * @param X input array 37 * @param stride stride length 38 * @param n pointer for storing the number of non-NaN elements 39 * @return output value 40 */ 41 double stdlib_strided_dnannsumkbn( const int64_t N, const double *X, const int64_t stride, int64_t *n ) { 42 double sum; 43 int64_t ix; 44 int64_t i; 45 double v; 46 double t; 47 double c; 48 49 sum = 0.0; 50 *n = 0; 51 if ( N <= 0 ) { 52 return sum; 53 } 54 if ( N == 1 || stride == 0 ) { 55 if ( stdlib_base_is_nan( X[ 0 ] ) ) { 56 return sum; 57 } 58 *n += 1; 59 return X[ 0 ]; 60 } 61 if ( stride < 0 ) { 62 ix = (1-N) * stride; 63 } else { 64 ix = 0; 65 } 66 c = 0.0; 67 for ( i = 0; i < N; i++ ) { 68 v = X[ ix ]; 69 if ( !stdlib_base_is_nan( v ) ) { 70 t = sum + v; 71 if ( fabs( sum ) >= fabs( v ) ) { 72 c += (sum-t) + v; 73 } else { 74 c += (v-t) + sum; 75 } 76 sum = t; 77 *n += 1; 78 } 79 ix += stride; 80 } 81 return sum + c; 82 }