ndarray.js (2923B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 35 * 36 * ## References 37 * 38 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float64Array} x - input array 42 * @param {integer} strideX - `x` stride length 43 * @param {NonNegativeInteger} offsetX - `x` starting index 44 * @param {Float64Array} out - output array 45 * @param {integer} strideOut - `out` stride length 46 * @param {NonNegativeInteger} offsetOut - `out` starting index 47 * @returns {Float64Array} output array 48 * 49 * @example 50 * var Float64Array = require( '@stdlib/array/float64' ); 51 * var floor = require( '@stdlib/math/base/special/floor' ); 52 * 53 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); 54 * var out = new Float64Array( 2 ); 55 * 56 * var N = floor( x.length / 2 ); 57 * 58 * var v = dnannsumkbn( N, x, 2, 1, out, 1, 0 ); 59 * // returns <Float64Array>[ 5.0, 4 ] 60 */ 61 function dnannsumkbn( N, x, strideX, offsetX, out, strideOut, offsetOut ) { 62 var sum; 63 var ix; 64 var io; 65 var v; 66 var t; 67 var c; 68 var n; 69 var i; 70 71 ix = offsetX; 72 io = offsetOut; 73 74 sum = 0.0; 75 if ( N <= 0 ) { 76 out[ io ] = sum; 77 out[ io+strideOut ] = 0; 78 return out; 79 } 80 if ( N === 1 || strideX === 0 ) { 81 if ( isnan( x[ ix ] ) ) { 82 out[ io ] = sum; 83 out[ io+strideOut ] = 0; 84 return out; 85 } 86 out[ io ] = x[ ix ]; 87 out[ io+strideOut ] = 1; 88 return out; 89 } 90 c = 0.0; 91 n = 0; 92 for ( i = 0; i < N; i++ ) { 93 v = x[ ix ]; 94 if ( isnan( v ) === false ) { 95 t = sum + v; 96 if ( abs( sum ) >= abs( v ) ) { 97 c += (sum-t) + v; 98 } else { 99 c += (v-t) + sum; 100 } 101 sum = t; 102 n += 1; 103 } 104 ix += strideX; 105 } 106 out[ io ] = sum + c; 107 out[ io+strideOut ] = n; 108 return out; 109 } 110 111 112 // EXPORTS // 113 114 module.exports = dnannsumkbn;