time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (2923B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var abs = require( '@stdlib/math/base/special/abs' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.
     31 *
     32 * ## Method
     33 *
     34 * -   This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
     35 *
     36 * ## References
     37 *
     38 * -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
     39 *
     40 * @param {PositiveInteger} N - number of indexed elements
     41 * @param {Float64Array} x - input array
     42 * @param {integer} strideX - `x` stride length
     43 * @param {NonNegativeInteger} offsetX - `x` starting index
     44 * @param {Float64Array} out - output array
     45 * @param {integer} strideOut - `out` stride length
     46 * @param {NonNegativeInteger} offsetOut - `out` starting index
     47 * @returns {Float64Array} output array
     48 *
     49 * @example
     50 * var Float64Array = require( '@stdlib/array/float64' );
     51 * var floor = require( '@stdlib/math/base/special/floor' );
     52 *
     53 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
     54 * var out = new Float64Array( 2 );
     55 *
     56 * var N = floor( x.length / 2 );
     57 *
     58 * var v = dnannsumkbn( N, x, 2, 1, out, 1, 0 );
     59 * // returns <Float64Array>[ 5.0, 4 ]
     60 */
     61 function dnannsumkbn( N, x, strideX, offsetX, out, strideOut, offsetOut ) {
     62 	var sum;
     63 	var ix;
     64 	var io;
     65 	var v;
     66 	var t;
     67 	var c;
     68 	var n;
     69 	var i;
     70 
     71 	ix = offsetX;
     72 	io = offsetOut;
     73 
     74 	sum = 0.0;
     75 	if ( N <= 0 ) {
     76 		out[ io ] = sum;
     77 		out[ io+strideOut ] = 0;
     78 		return out;
     79 	}
     80 	if ( N === 1 || strideX === 0 ) {
     81 		if ( isnan( x[ ix ] ) ) {
     82 			out[ io ] = sum;
     83 			out[ io+strideOut ] = 0;
     84 			return out;
     85 		}
     86 		out[ io ] = x[ ix ];
     87 		out[ io+strideOut ] = 1;
     88 		return out;
     89 	}
     90 	c = 0.0;
     91 	n = 0;
     92 	for ( i = 0; i < N; i++ ) {
     93 		v = x[ ix ];
     94 		if ( isnan( v ) === false ) {
     95 			t = sum + v;
     96 			if ( abs( sum ) >= abs( v ) ) {
     97 				c += (sum-t) + v;
     98 			} else {
     99 				c += (v-t) + sum;
    100 			}
    101 			sum = t;
    102 			n += 1;
    103 		}
    104 		ix += strideX;
    105 	}
    106 	out[ io ] = sum + c;
    107 	out[ io+strideOut ] = n;
    108 	return out;
    109 }
    110 
    111 
    112 // EXPORTS //
    113 
    114 module.exports = dnannsumkbn;