dnannsumkbn.js (2758B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2020 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var abs = require( '@stdlib/math/base/special/abs' ); 25 26 27 // MAIN // 28 29 /** 30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm. 31 * 32 * ## Method 33 * 34 * - This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974). 35 * 36 * ## References 37 * 38 * - Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106). 39 * 40 * @param {PositiveInteger} N - number of indexed elements 41 * @param {Float64Array} x - input array 42 * @param {integer} strideX - `x` stride length 43 * @param {Float64Array} out - output array 44 * @param {integer} strideOut - `out` stride length 45 * @returns {Float64Array} output array 46 * 47 * @example 48 * var Float64Array = require( '@stdlib/array/float64' ); 49 * 50 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); 51 * var out = new Float64Array( 2 ); 52 * 53 * var v = dnannsumkbn( x.length, x, 1, out, 1 ); 54 * // returns <Float64Array>[ 1.0, 3 ] 55 */ 56 function dnannsumkbn( N, x, strideX, out, strideOut ) { 57 var sum; 58 var ix; 59 var io; 60 var v; 61 var t; 62 var c; 63 var n; 64 var i; 65 66 if ( strideX < 0 ) { 67 ix = (1-N) * strideX; 68 } else { 69 ix = 0; 70 } 71 if ( strideOut < 0 ) { 72 io = -strideOut; 73 } else { 74 io = 0; 75 } 76 sum = 0.0; 77 if ( N <= 0 ) { 78 out[ io ] = sum; 79 out[ io+strideOut ] = 0; 80 return out; 81 } 82 if ( N === 1 || strideX === 0 ) { 83 if ( isnan( x[ ix ] ) ) { 84 out[ io ] = sum; 85 out[ io+strideOut ] = 0; 86 return out; 87 } 88 out[ io ] = x[ ix ]; 89 out[ io+strideOut ] = 1; 90 return out; 91 } 92 c = 0.0; 93 n = 0; 94 for ( i = 0; i < N; i++ ) { 95 v = x[ ix ]; 96 if ( isnan( v ) === false ) { 97 t = sum + v; 98 if ( abs( sum ) >= abs( v ) ) { 99 c += (sum-t) + v; 100 } else { 101 c += (v-t) + sum; 102 } 103 sum = t; 104 n += 1; 105 } 106 ix += strideX; 107 } 108 out[ io ] = sum + c; 109 out[ io+strideOut ] = n; 110 return out; 111 } 112 113 114 // EXPORTS // 115 116 module.exports = dnannsumkbn;