time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

dnannsumkbn.js (2758B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var abs = require( '@stdlib/math/base/special/abs' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Computes the sum of double-precision floating-point strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.
     31 *
     32 * ## Method
     33 *
     34 * -   This implementation uses an "improved Kahan–Babuška algorithm", as described by Neumaier (1974).
     35 *
     36 * ## References
     37 *
     38 * -   Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." _Zeitschrift Für Angewandte Mathematik Und Mechanik_ 54 (1): 39–51. doi:[10.1002/zamm.19740540106](https://doi.org/10.1002/zamm.19740540106).
     39 *
     40 * @param {PositiveInteger} N - number of indexed elements
     41 * @param {Float64Array} x - input array
     42 * @param {integer} strideX - `x` stride length
     43 * @param {Float64Array} out - output array
     44 * @param {integer} strideOut - `out` stride length
     45 * @returns {Float64Array} output array
     46 *
     47 * @example
     48 * var Float64Array = require( '@stdlib/array/float64' );
     49 *
     50 * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
     51 * var out = new Float64Array( 2 );
     52 *
     53 * var v = dnannsumkbn( x.length, x, 1, out, 1 );
     54 * // returns <Float64Array>[ 1.0, 3 ]
     55 */
     56 function dnannsumkbn( N, x, strideX, out, strideOut ) {
     57 	var sum;
     58 	var ix;
     59 	var io;
     60 	var v;
     61 	var t;
     62 	var c;
     63 	var n;
     64 	var i;
     65 
     66 	if ( strideX < 0 ) {
     67 		ix = (1-N) * strideX;
     68 	} else {
     69 		ix = 0;
     70 	}
     71 	if ( strideOut < 0 ) {
     72 		io = -strideOut;
     73 	} else {
     74 		io = 0;
     75 	}
     76 	sum = 0.0;
     77 	if ( N <= 0 ) {
     78 		out[ io ] = sum;
     79 		out[ io+strideOut ] = 0;
     80 		return out;
     81 	}
     82 	if ( N === 1 || strideX === 0 ) {
     83 		if ( isnan( x[ ix ] ) ) {
     84 			out[ io ] = sum;
     85 			out[ io+strideOut ] = 0;
     86 			return out;
     87 		}
     88 		out[ io ] = x[ ix ];
     89 		out[ io+strideOut ] = 1;
     90 		return out;
     91 	}
     92 	c = 0.0;
     93 	n = 0;
     94 	for ( i = 0; i < N; i++ ) {
     95 		v = x[ ix ];
     96 		if ( isnan( v ) === false ) {
     97 			t = sum + v;
     98 			if ( abs( sum ) >= abs( v ) ) {
     99 				c += (sum-t) + v;
    100 			} else {
    101 				c += (v-t) + sum;
    102 			}
    103 			sum = t;
    104 			n += 1;
    105 		}
    106 		ix += strideX;
    107 	}
    108 	out[ io ] = sum + c;
    109 	out[ io+strideOut ] = n;
    110 	return out;
    111 }
    112 
    113 
    114 // EXPORTS //
    115 
    116 module.exports = dnannsumkbn;