time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

ndarray.js (1684B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2020 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MAIN //
     22 
     23 /**
     24 * Adds a constant to each double-precision floating-point strided array element and computes the sum using ordinary recursive summation.
     25 *
     26 * @param {PositiveInteger} N - number of indexed elements
     27 * @param {number} alpha - constant
     28 * @param {Float64Array} x - input array
     29 * @param {integer} stride - stride length
     30 * @param {NonNegativeInteger} offset - starting index
     31 * @returns {number} sum
     32 *
     33 * @example
     34 * var Float64Array = require( '@stdlib/array/float64' );
     35 * var floor = require( '@stdlib/math/base/special/floor' );
     36 *
     37 * var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
     38 * var N = floor( x.length / 2 );
     39 *
     40 * var v = dapxsumors( N, 5.0, x, 2, 1 );
     41 * // returns 25.0
     42 */
     43 function dapxsumors( N, alpha, x, stride, offset ) {
     44 	var sum;
     45 	var ix;
     46 	var i;
     47 
     48 	if ( N <= 0 ) {
     49 		return 0.0;
     50 	}
     51 	if ( N === 1 || stride === 0 ) {
     52 		return alpha + x[ 0 ];
     53 	}
     54 	ix = offset;
     55 	sum = 0.0;
     56 	for ( i = 0; i < N; i++ ) {
     57 		sum += alpha + x[ ix ];
     58 		ix += stride;
     59 	}
     60 	return sum;
     61 }
     62 
     63 
     64 // EXPORTS //
     65 
     66 module.exports = dapxsumors;