time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

sswap.f (3389B)


      1 !>
      2 ! @license Apache-2.0
      3 !
      4 ! Copyright (c) 2020 The Stdlib Authors.
      5 !
      6 ! Licensed under the Apache License, Version 2.0 (the "License");
      7 ! you may not use this file except in compliance with the License.
      8 ! You may obtain a copy of the License at
      9 !
     10 !    http://www.apache.org/licenses/LICENSE-2.0
     11 !
     12 ! Unless required by applicable law or agreed to in writing, software
     13 ! distributed under the License is distributed on an "AS IS" BASIS,
     14 ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 ! See the License for the specific language governing permissions and
     16 ! limitations under the License.
     17 !<
     18 
     19 !> Interchanges two single-precision floating-point vectors.
     20 !
     21 ! ## Notes
     22 !
     23 ! * Modified version of reference BLAS level1 routine (version 3.7.0). Updated to "free form" Fortran 95.
     24 !
     25 ! ## Authors
     26 !
     27 ! * Univ. of Tennessee
     28 ! * Univ. of California Berkeley
     29 ! * Univ. of Colorado Denver
     30 ! * NAG Ltd.
     31 !
     32 ! ## History
     33 !
     34 ! * Jack Dongarra, linpack, 3/11/78.
     35 !
     36 !   - modified 12/3/93, array(1) declarations changed to array(*)
     37 !
     38 ! ## License
     39 !
     40 ! From <http://netlib.org/blas/faq.html>:
     41 !
     42 ! > The reference BLAS is a freely-available software package. It is available from netlib via anonymous ftp and the World Wide Web. Thus, it can be included in commercial software packages (and has been). We only ask that proper credit be given to the authors.
     43 ! >
     44 ! > Like all software, it is copyrighted. It is not trademarked, but we do ask the following:
     45 ! >
     46 ! > * If you modify the source for these routines we ask that you change the name of the routine and comment the changes made to the original.
     47 ! >
     48 ! > * We will gladly answer any questions regarding the software. If a modification is done, however, it is the responsibility of the person who modified the routine to provide support.
     49 !
     50 ! @param {integer} N - number of values to swap
     51 ! @param {Array<real>} sx - first input array
     52 ! @param {integer} strideX - `sx` stride length
     53 ! @param {Array<real>} sy - second input array
     54 ! @param {integer} strideY - `sy` stride length
     55 !<
     56 subroutine sswap( N, sx, strideX, sy, strideY )
     57   implicit none
     58   ! ..
     59   ! Scalar arguments:
     60   integer :: strideX, strideY, N
     61   ! ..
     62   ! Array arguments:
     63   real :: sx(*), sy(*)
     64   ! ..
     65   ! Local scalars:
     66   integer :: mp1, ix, iy, i, m
     67   real :: tmp
     68   ! ..
     69   ! Intrinsic functions:
     70   intrinsic mod
     71   ! ..
     72   if ( N <= 0 ) then
     73     return
     74   end if
     75   ! ..
     76   ! If both strides are equal to `1`, use unrolled loops...
     77   if ( strideX == 1 .AND. strideY == 1 ) then
     78     m = mod( N, 3 )
     79     ! ..
     80     ! If we have a remainder, do a clean-up loop...
     81     if ( m /= 0 ) then
     82       do i = 1, m
     83         tmp = sx( i )
     84         sx( i ) = sy( i )
     85         sy( i ) = tmp
     86       end do
     87       if ( N < 3 ) then
     88         return
     89       end if
     90     end if
     91     mp1 = m + 1
     92     do i = mp1, N, 3
     93       tmp = sx( i )
     94       sx( i ) = sy( i )
     95       sy( i ) = tmp
     96 
     97       tmp = sx( i+1 )
     98       sx( i+1 ) = sy( i+1 )
     99       sy( i+1 ) = tmp
    100 
    101       tmp = sx( i+2 )
    102       sx( i+2 ) = sy( i+2 )
    103       sy( i+2 ) = tmp
    104     end do
    105   else
    106     if ( strideX < 0 ) then
    107       ix = (-N+1)*strideX + 1
    108     else
    109       ix = 1
    110     end if
    111     if ( strideY < 0 ) then
    112       iy = (-N+1)*strideY + 1
    113     else
    114       iy = 1
    115     end if
    116     do i = 1, N
    117       tmp = sx( ix )
    118       sx( ix ) = sy( iy )
    119       sy( iy ) = tmp
    120       ix = ix + strideX
    121       iy = iy + strideY
    122     end do
    123   end if
    124   return
    125 end subroutine sswap