samples-one-thread.c (4420B)
1 #include <math.h> 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <time.h> 5 6 const float PI = 3.14159265358979323846; 7 8 #define N 1000000 9 10 //Array helpers 11 12 void array_print(float* array, int length) 13 { 14 for (int i = 0; i < length; i++) { 15 printf("item[%d] = %f\n", i, array[i]); 16 } 17 printf("\n"); 18 } 19 20 void array_fill(float* array, int length, float item) 21 { 22 int i; 23 { 24 for (i = 0; i < length; i++) { 25 array[i] = item; 26 } 27 } 28 } 29 30 float array_sum(float* array, int length) 31 { 32 float output = 0.0; 33 for (int i = 0; i < length; i++) { 34 output += array[i]; 35 } 36 return output; 37 } 38 39 void array_cumsum(float* array_to_sum, float* array_cumsummed, int length) 40 { 41 array_cumsummed[0] = array_to_sum[0]; 42 for (int i = 1; i < length; i++) { 43 array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i]; 44 } 45 } 46 47 float rand_float(float to) 48 { 49 return ((float)rand() / (float)RAND_MAX) * to; 50 } 51 52 float ur_normal() 53 { 54 float u1 = rand_float(1.0); 55 float u2 = rand_float(1.0); 56 float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2); 57 return z; 58 } 59 60 inline float random_uniform(float from, float to) 61 { 62 return ((float)rand() / (float)RAND_MAX) * (to - from) + from; 63 } 64 65 inline float random_normal(float mean, float sigma) 66 { 67 return (mean + sigma * ur_normal()); 68 } 69 70 inline float random_lognormal(float logmean, float logsigma) 71 { 72 return expf(random_normal(logmean, logsigma)); 73 } 74 75 inline float random_to(float low, float high) 76 { 77 const float NORMAL95CONFIDENCE = 1.6448536269514722; 78 float loglow = logf(low); 79 float loghigh = logf(high); 80 float logmean = (loglow + loghigh) / 2; 81 float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE); 82 return random_lognormal(logmean, logsigma); 83 } 84 85 void array_random_to(float* array, int length, float low, float high) 86 { 87 int i; 88 #pragma omp private(i) 89 { 90 #pragma omp for 91 for (i = 0; i < length; i++) { 92 array[i] = random_to(low, high); 93 } 94 } 95 } 96 97 void mixture(float (*samplers[])(void), float* weights, int n_dists, float* results, int results_length) 98 { 99 float sum_weights = array_sum(weights, n_dists); 100 float* normalized_weights = malloc(n_dists * sizeof(float)); 101 for (int i = 0; i < n_dists; i++) { 102 normalized_weights[i] = weights[i] / sum_weights; 103 } 104 105 float* cummulative_weights = malloc(n_dists * sizeof(float)); 106 array_cumsum(normalized_weights, cummulative_weights, n_dists); 107 108 //create var holders 109 float p1; 110 int sample_index, i, own_length; 111 112 { 113 for (int i = 0; i < results_length; i++) { 114 p1 = random_uniform(0, 1); 115 for (int j = 0; j < n_dists; j++) { 116 if (p1 < cummulative_weights[j]) { 117 results[i] = samplers[j](); 118 break; 119 } 120 } 121 } 122 } 123 free(normalized_weights); 124 free(cummulative_weights); 125 } 126 127 float sample_0() 128 { 129 return 0; 130 } 131 132 float sample_1() 133 { 134 return 1; 135 } 136 137 float sample_few() 138 { 139 return random_to(1, 3); 140 } 141 142 float sample_many() 143 { 144 return random_to(2, 10); 145 } 146 147 int main() 148 { 149 //initialize randomness 150 srand(1); 151 152 // clock_t start, end; 153 // start = clock(); 154 155 // Toy example 156 // Declare variables in play 157 float p_a, p_b, p_c; 158 // printf("Max threads: %d\n", n_threads); 159 // omp_set_num_threads(n_threads); 160 161 // Initialize variables 162 p_a = 0.8; 163 p_b = 0.5; 164 p_c = p_a * p_b; 165 166 // Generate mixture 167 int n_dists = 4; 168 float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 }; 169 float (*samplers[])(void) = { sample_0, sample_1, sample_few, sample_many }; 170 171 float* results = malloc(N * sizeof(float)); 172 mixture(samplers, weights, n_dists, results, N); 173 printf("Sum(dist_mixture, N)/N = %f\n", array_sum(results, N) / N); 174 // array_print(dist_mixture[0], N); 175 176 // end = clock(); 177 // printf("Time (ms): %f\n", ((double)(end - start)) / (CLOCKS_PER_SEC * 1000)); 178 // ^ Will only measure how long it takes the inner main to run, not the whole program, 179 // including e.g., loading the program into memory or smth. 180 // Also CLOCKS_PER_SEC in POSIX is a constant equal to 1000000. 181 // See: https://stackoverflow.com/questions/10455905/why-is-clocks-per-sec-not-the-actual-number-of-clocks-per-second 182 return 0; 183 }