gamma.js (3797B)
1 import { deepMap } from '../../utils/collection.js'; 2 import { factory } from '../../utils/factory.js'; 3 import { gammaG, gammaNumber, gammaP } from '../../plain/number/index.js'; 4 var name = 'gamma'; 5 var dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex']; 6 export var createGamma = /* #__PURE__ */factory(name, dependencies, _ref => { 7 var { 8 typed, 9 config, 10 multiplyScalar, 11 pow, 12 BigNumber: _BigNumber, 13 Complex: _Complex 14 } = _ref; 15 16 /** 17 * Compute the gamma function of a value using Lanczos approximation for 18 * small values, and an extended Stirling approximation for large values. 19 * 20 * For matrices, the function is evaluated element wise. 21 * 22 * Syntax: 23 * 24 * math.gamma(n) 25 * 26 * Examples: 27 * 28 * math.gamma(5) // returns 24 29 * math.gamma(-0.5) // returns -3.5449077018110335 30 * math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i 31 * 32 * See also: 33 * 34 * combinations, factorial, permutations 35 * 36 * @param {number | Array | Matrix} n A real or complex number 37 * @return {number | Array | Matrix} The gamma of `n` 38 */ 39 return typed(name, { 40 number: gammaNumber, 41 Complex: function Complex(n) { 42 if (n.im === 0) { 43 return this(n.re); 44 } // Lanczos approximation doesn't work well with real part lower than 0.5 45 // So reflection formula is required 46 47 48 if (n.re < 0.5) { 49 // Euler's reflection formula 50 // gamma(1-z) * gamma(z) = PI / sin(PI * z) 51 // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined] 52 // thanks to imperfect sin implementation sin(PI * n) != 0 53 // we can safely use it anyway 54 var _t = new _Complex(1 - n.re, -n.im); 55 56 var r = new _Complex(Math.PI * n.re, Math.PI * n.im); 57 return new _Complex(Math.PI).div(r.sin()).div(this(_t)); 58 } // Lanczos approximation 59 // z -= 1 60 61 62 n = new _Complex(n.re - 1, n.im); // x = gammaPval[0] 63 64 var x = new _Complex(gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP): 65 66 for (var i = 1; i < gammaP.length; ++i) { 67 // x += gammaPval / (z + i) 68 var gammaPval = new _Complex(gammaP[i], 0); 69 x = x.add(gammaPval.div(n.add(i))); 70 } // t = z + gammaG + 0.5 71 72 73 var t = new _Complex(n.re + gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x 74 75 var twoPiSqrt = Math.sqrt(2 * Math.PI); 76 var tpow = t.pow(n.add(0.5)); 77 var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)] 78 79 return x.mul(twoPiSqrt).mul(tpow).mul(expt); 80 }, 81 BigNumber: function BigNumber(n) { 82 if (n.isInteger()) { 83 return n.isNegative() || n.isZero() ? new _BigNumber(Infinity) : bigFactorial(n.minus(1)); 84 } 85 86 if (!n.isFinite()) { 87 return new _BigNumber(n.isNegative() ? NaN : Infinity); 88 } 89 90 throw new Error('Integer BigNumber expected'); 91 }, 92 'Array | Matrix': function ArrayMatrix(n) { 93 return deepMap(n, this); 94 } 95 }); 96 /** 97 * Calculate factorial for a BigNumber 98 * @param {BigNumber} n 99 * @returns {BigNumber} Returns the factorial of n 100 */ 101 102 function bigFactorial(n) { 103 if (n < 8) { 104 return new _BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]); 105 } 106 107 var precision = config.precision + (Math.log(n.toNumber()) | 0); 108 109 var Big = _BigNumber.clone({ 110 precision: precision 111 }); 112 113 if (n % 2 === 1) { 114 return n.times(bigFactorial(new _BigNumber(n - 1))); 115 } 116 117 var p = n; 118 var prod = new Big(n); 119 var sum = n.toNumber(); 120 121 while (p > 2) { 122 p -= 2; 123 sum += p; 124 prod = prod.times(sum); 125 } 126 127 return new _BigNumber(prod.toPrecision(_BigNumber.precision)); 128 } 129 });