simple-squiggle

A restricted subset of Squiggle
Log | Files | Refs | README

nthRoot.js (6350B)


      1 import { factory } from '../../utils/factory.js';
      2 import { createAlgorithm01 } from '../../type/matrix/utils/algorithm01.js';
      3 import { createAlgorithm02 } from '../../type/matrix/utils/algorithm02.js';
      4 import { createAlgorithm06 } from '../../type/matrix/utils/algorithm06.js';
      5 import { createAlgorithm11 } from '../../type/matrix/utils/algorithm11.js';
      6 import { createAlgorithm13 } from '../../type/matrix/utils/algorithm13.js';
      7 import { createAlgorithm14 } from '../../type/matrix/utils/algorithm14.js';
      8 import { nthRootNumber } from '../../plain/number/index.js';
      9 var name = 'nthRoot';
     10 var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber'];
     11 export var createNthRoot = /* #__PURE__ */factory(name, dependencies, _ref => {
     12   var {
     13     typed,
     14     matrix,
     15     equalScalar,
     16     BigNumber: _BigNumber
     17   } = _ref;
     18   var algorithm01 = createAlgorithm01({
     19     typed
     20   });
     21   var algorithm02 = createAlgorithm02({
     22     typed,
     23     equalScalar
     24   });
     25   var algorithm06 = createAlgorithm06({
     26     typed,
     27     equalScalar
     28   });
     29   var algorithm11 = createAlgorithm11({
     30     typed,
     31     equalScalar
     32   });
     33   var algorithm13 = createAlgorithm13({
     34     typed
     35   });
     36   var algorithm14 = createAlgorithm14({
     37     typed
     38   });
     39   /**
     40    * Calculate the nth root of a value.
     41    * The principal nth root of a positive real number A, is the positive real
     42    * solution of the equation
     43    *
     44    *     x^root = A
     45    *
     46    * For matrices, the function is evaluated element wise.
     47    *
     48    * Syntax:
     49    *
     50    *     math.nthRoot(a)
     51    *     math.nthRoot(a, root)
     52    *
     53    * Examples:
     54    *
     55    *     math.nthRoot(9, 2)    // returns 3, as 3^2 == 9
     56    *     math.sqrt(9)          // returns 3, as 3^2 == 9
     57    *     math.nthRoot(64, 3)   // returns 4, as 4^3 == 64
     58    *
     59    * See also:
     60    *
     61    *     sqrt, pow
     62    *
     63    * @param {number | BigNumber | Array | Matrix | Complex} a
     64    *              Value for which to calculate the nth root
     65    * @param {number | BigNumber} [root=2]    The root.
     66    * @return {number | Complex | Array | Matrix} Returns the nth root of `a`
     67    */
     68 
     69   var complexErr = '' + 'Complex number not supported in function nthRoot. ' + 'Use nthRoots instead.';
     70   return typed(name, {
     71     number: function number(x) {
     72       return nthRootNumber(x, 2);
     73     },
     74     'number, number': nthRootNumber,
     75     BigNumber: function BigNumber(x) {
     76       return _bigNthRoot(x, new _BigNumber(2));
     77     },
     78     Complex: function Complex(x) {
     79       throw new Error(complexErr);
     80     },
     81     'Complex, number': function ComplexNumber(x, y) {
     82       throw new Error(complexErr);
     83     },
     84     'BigNumber, BigNumber': _bigNthRoot,
     85     'Array | Matrix': function ArrayMatrix(x) {
     86       return this(x, 2);
     87     },
     88     'SparseMatrix, SparseMatrix': function SparseMatrixSparseMatrix(x, y) {
     89       // density must be one (no zeros in matrix)
     90       if (y.density() === 1) {
     91         // sparse + sparse
     92         return algorithm06(x, y, this);
     93       } else {
     94         // throw exception
     95         throw new Error('Root must be non-zero');
     96       }
     97     },
     98     'SparseMatrix, DenseMatrix': function SparseMatrixDenseMatrix(x, y) {
     99       return algorithm02(y, x, this, true);
    100     },
    101     'DenseMatrix, SparseMatrix': function DenseMatrixSparseMatrix(x, y) {
    102       // density must be one (no zeros in matrix)
    103       if (y.density() === 1) {
    104         // dense + sparse
    105         return algorithm01(x, y, this, false);
    106       } else {
    107         // throw exception
    108         throw new Error('Root must be non-zero');
    109       }
    110     },
    111     'DenseMatrix, DenseMatrix': function DenseMatrixDenseMatrix(x, y) {
    112       return algorithm13(x, y, this);
    113     },
    114     'Array, Array': function ArrayArray(x, y) {
    115       // use matrix implementation
    116       return this(matrix(x), matrix(y)).valueOf();
    117     },
    118     'Array, Matrix': function ArrayMatrix(x, y) {
    119       // use matrix implementation
    120       return this(matrix(x), y);
    121     },
    122     'Matrix, Array': function MatrixArray(x, y) {
    123       // use matrix implementation
    124       return this(x, matrix(y));
    125     },
    126     'SparseMatrix, number | BigNumber': function SparseMatrixNumberBigNumber(x, y) {
    127       return algorithm11(x, y, this, false);
    128     },
    129     'DenseMatrix, number | BigNumber': function DenseMatrixNumberBigNumber(x, y) {
    130       return algorithm14(x, y, this, false);
    131     },
    132     'number | BigNumber, SparseMatrix': function numberBigNumberSparseMatrix(x, y) {
    133       // density must be one (no zeros in matrix)
    134       if (y.density() === 1) {
    135         // sparse - scalar
    136         return algorithm11(y, x, this, true);
    137       } else {
    138         // throw exception
    139         throw new Error('Root must be non-zero');
    140       }
    141     },
    142     'number | BigNumber, DenseMatrix': function numberBigNumberDenseMatrix(x, y) {
    143       return algorithm14(y, x, this, true);
    144     },
    145     'Array, number | BigNumber': function ArrayNumberBigNumber(x, y) {
    146       // use matrix implementation
    147       return this(matrix(x), y).valueOf();
    148     },
    149     'number | BigNumber, Array': function numberBigNumberArray(x, y) {
    150       // use matrix implementation
    151       return this(x, matrix(y)).valueOf();
    152     }
    153   });
    154   /**
    155    * Calculate the nth root of a for BigNumbers, solve x^root == a
    156    * https://rosettacode.org/wiki/Nth_root#JavaScript
    157    * @param {BigNumber} a
    158    * @param {BigNumber} root
    159    * @private
    160    */
    161 
    162   function _bigNthRoot(a, root) {
    163     var precision = _BigNumber.precision;
    164 
    165     var Big = _BigNumber.clone({
    166       precision: precision + 2
    167     });
    168 
    169     var zero = new _BigNumber(0);
    170     var one = new Big(1);
    171     var inv = root.isNegative();
    172 
    173     if (inv) {
    174       root = root.neg();
    175     }
    176 
    177     if (root.isZero()) {
    178       throw new Error('Root must be non-zero');
    179     }
    180 
    181     if (a.isNegative() && !root.abs().mod(2).equals(1)) {
    182       throw new Error('Root must be odd when a is negative.');
    183     } // edge cases zero and infinity
    184 
    185 
    186     if (a.isZero()) {
    187       return inv ? new Big(Infinity) : 0;
    188     }
    189 
    190     if (!a.isFinite()) {
    191       return inv ? zero : a;
    192     }
    193 
    194     var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer,
    195     // so (-1) ^ (1/root) = -1
    196 
    197     x = a.isNeg() ? x.neg() : x;
    198     return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision));
    199   }
    200 });
    201 export var createNthRootNumber = /* #__PURE__ */factory(name, ['typed'], _ref2 => {
    202   var {
    203     typed
    204   } = _ref2;
    205   return typed(name, {
    206     number: nthRootNumber,
    207     'number, number': nthRootNumber
    208   });
    209 });