csChol.js (3839B)
1 import { factory } from '../../../utils/factory.js'; 2 import { csEreach } from './csEreach.js'; 3 import { createCsSymperm } from './csSymperm.js'; 4 var name = 'csChol'; 5 var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix']; 6 export var createCsChol = /* #__PURE__ */factory(name, dependencies, _ref => { 7 var { 8 divideScalar, 9 sqrt, 10 subtract, 11 multiply, 12 im, 13 re, 14 conj, 15 equal, 16 smallerEq, 17 SparseMatrix 18 } = _ref; 19 var csSymperm = createCsSymperm({ 20 conj, 21 SparseMatrix 22 }); 23 /** 24 * Computes the Cholesky factorization of matrix A. It computes L and P so 25 * L * L' = P * A * P' 26 * 27 * @param {Matrix} m The A Matrix to factorize, only upper triangular part used 28 * @param {Object} s The symbolic analysis from cs_schol() 29 * 30 * @return {Number} The numeric Cholesky factorization of A or null 31 * 32 * Reference: http://faculty.cse.tamu.edu/davis/publications.html 33 */ 34 35 return function csChol(m, s) { 36 // validate input 37 if (!m) { 38 return null; 39 } // m arrays 40 41 42 var size = m._size; // columns 43 44 var n = size[1]; // symbolic analysis result 45 46 var parent = s.parent; 47 var cp = s.cp; 48 var pinv = s.pinv; // L arrays 49 50 var lvalues = []; 51 var lindex = []; 52 var lptr = []; // L 53 54 var L = new SparseMatrix({ 55 values: lvalues, 56 index: lindex, 57 ptr: lptr, 58 size: [n, n] 59 }); // vars 60 61 var c = []; // (2 * n) 62 63 var x = []; // (n) 64 // compute C = P * A * P' 65 66 var cm = pinv ? csSymperm(m, pinv, 1) : m; // C matrix arrays 67 68 var cvalues = cm._values; 69 var cindex = cm._index; 70 var cptr = cm._ptr; // vars 71 72 var k, p; // initialize variables 73 74 for (k = 0; k < n; k++) { 75 lptr[k] = c[k] = cp[k]; 76 } // compute L(k,:) for L*L' = C 77 78 79 for (k = 0; k < n; k++) { 80 // nonzero pattern of L(k,:) 81 var top = csEreach(cm, k, parent, c); // x (0:k) is now zero 82 83 x[k] = 0; // x = full(triu(C(:,k))) 84 85 for (p = cptr[k]; p < cptr[k + 1]; p++) { 86 if (cindex[p] <= k) { 87 x[cindex[p]] = cvalues[p]; 88 } 89 } // d = C(k,k) 90 91 92 var d = x[k]; // clear x for k+1st iteration 93 94 x[k] = 0; // solve L(0:k-1,0:k-1) * x = C(:,k) 95 96 for (; top < n; top++) { 97 // s[top..n-1] is pattern of L(k,:) 98 var i = s[top]; // L(k,i) = x (i) / L(i,i) 99 100 var lki = divideScalar(x[i], lvalues[lptr[i]]); // clear x for k+1st iteration 101 102 x[i] = 0; 103 104 for (p = lptr[i] + 1; p < c[i]; p++) { 105 // row 106 var r = lindex[p]; // update x[r] 107 108 x[r] = subtract(x[r], multiply(lvalues[p], lki)); 109 } // d = d - L(k,i)*L(k,i) 110 111 112 d = subtract(d, multiply(lki, conj(lki))); 113 p = c[i]++; // store L(k,i) in column i 114 115 lindex[p] = k; 116 lvalues[p] = conj(lki); 117 } // compute L(k,k) 118 119 120 if (smallerEq(re(d), 0) || !equal(im(d), 0)) { 121 // not pos def 122 return null; 123 } 124 125 p = c[k]++; // store L(k,k) = sqrt(d) in column k 126 127 lindex[p] = k; 128 lvalues[p] = sqrt(d); 129 } // finalize L 130 131 132 lptr[n] = cp[n]; // P matrix 133 134 var P; // check we need to calculate P 135 136 if (pinv) { 137 // P arrays 138 var pvalues = []; 139 var pindex = []; 140 var pptr = []; // create P matrix 141 142 for (p = 0; p < n; p++) { 143 // initialize ptr (one value per column) 144 pptr[p] = p; // index (apply permutation vector) 145 146 pindex.push(pinv[p]); // value 1 147 148 pvalues.push(1); 149 } // update ptr 150 151 152 pptr[n] = n; // P 153 154 P = new SparseMatrix({ 155 values: pvalues, 156 index: pindex, 157 ptr: pptr, 158 size: [n, n] 159 }); 160 } // return L & P 161 162 163 return { 164 L: L, 165 P: P 166 }; 167 }; 168 });