variance.js (6110B)
1 "use strict"; 2 3 Object.defineProperty(exports, "__esModule", { 4 value: true 5 }); 6 exports.createVariance = void 0; 7 8 var _collection = require("../../utils/collection.js"); 9 10 var _is = require("../../utils/is.js"); 11 12 var _factory = require("../../utils/factory.js"); 13 14 var _improveErrorMessage = require("./utils/improveErrorMessage.js"); 15 16 var DEFAULT_NORMALIZATION = 'unbiased'; 17 var name = 'variance'; 18 var dependencies = ['typed', 'add', 'subtract', 'multiply', 'divide', 'apply', 'isNaN']; 19 var createVariance = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { 20 var typed = _ref.typed, 21 add = _ref.add, 22 subtract = _ref.subtract, 23 multiply = _ref.multiply, 24 divide = _ref.divide, 25 apply = _ref.apply, 26 isNaN = _ref.isNaN; 27 28 /** 29 * Compute the variance of a matrix or a list with values. 30 * In case of a (multi dimensional) array or matrix, the variance over all 31 * elements will be calculated. 32 * 33 * Additionally, it is possible to compute the variance along the rows 34 * or columns of a matrix by specifying the dimension as the second argument. 35 * 36 * Optionally, the type of normalization can be specified as the final 37 * parameter. The parameter `normalization` can be one of the following values: 38 * 39 * - 'unbiased' (default) The sum of squared errors is divided by (n - 1) 40 * - 'uncorrected' The sum of squared errors is divided by n 41 * - 'biased' The sum of squared errors is divided by (n + 1) 42 * 43 * 44 * Note that older browser may not like the variable name `var`. In that 45 * case, the function can be called as `math['var'](...)` instead of 46 * `math.var(...)`. 47 * 48 * Syntax: 49 * 50 * math.variance(a, b, c, ...) 51 * math.variance(A) 52 * math.variance(A, normalization) 53 * math.variance(A, dimension) 54 * math.variance(A, dimension, normalization) 55 * 56 * Examples: 57 * 58 * math.variance(2, 4, 6) // returns 4 59 * math.variance([2, 4, 6, 8]) // returns 6.666666666666667 60 * math.variance([2, 4, 6, 8], 'uncorrected') // returns 5 61 * math.variance([2, 4, 6, 8], 'biased') // returns 4 62 * 63 * math.variance([[1, 2, 3], [4, 5, 6]]) // returns 3.5 64 * math.variance([[1, 2, 3], [4, 6, 8]], 0) // returns [4.5, 8, 12.5] 65 * math.variance([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 4] 66 * math.variance([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.5, 2] 67 * 68 * See also: 69 * 70 * mean, median, max, min, prod, std, sum 71 * 72 * @param {Array | Matrix} array 73 * A single matrix or or multiple scalar values 74 * @param {string} [normalization='unbiased'] 75 * Determines how to normalize the variance. 76 * Choose 'unbiased' (default), 'uncorrected', or 'biased'. 77 * @param dimension {number | BigNumber} 78 * Determines the axis to compute the variance for a matrix 79 * @return {*} The variance 80 */ 81 return typed(name, { 82 // variance([a, b, c, d, ...]) 83 'Array | Matrix': function ArrayMatrix(array) { 84 return _var(array, DEFAULT_NORMALIZATION); 85 }, 86 // variance([a, b, c, d, ...], normalization) 87 'Array | Matrix, string': _var, 88 // variance([a, b, c, c, ...], dim) 89 'Array | Matrix, number | BigNumber': function ArrayMatrixNumberBigNumber(array, dim) { 90 return _varDim(array, dim, DEFAULT_NORMALIZATION); 91 }, 92 // variance([a, b, c, c, ...], dim, normalization) 93 'Array | Matrix, number | BigNumber, string': _varDim, 94 // variance(a, b, c, d, ...) 95 '...': function _(args) { 96 return _var(args, DEFAULT_NORMALIZATION); 97 } 98 }); 99 /** 100 * Recursively calculate the variance of an n-dimensional array 101 * @param {Array} array 102 * @param {string} normalization 103 * Determines how to normalize the variance: 104 * - 'unbiased' The sum of squared errors is divided by (n - 1) 105 * - 'uncorrected' The sum of squared errors is divided by n 106 * - 'biased' The sum of squared errors is divided by (n + 1) 107 * @return {number | BigNumber} variance 108 * @private 109 */ 110 111 function _var(array, normalization) { 112 var sum; 113 var num = 0; 114 115 if (array.length === 0) { 116 throw new SyntaxError('Function variance requires one or more parameters (0 provided)'); 117 } // calculate the mean and number of elements 118 119 120 (0, _collection.deepForEach)(array, function (value) { 121 try { 122 sum = sum === undefined ? value : add(sum, value); 123 num++; 124 } catch (err) { 125 throw (0, _improveErrorMessage.improveErrorMessage)(err, 'variance', value); 126 } 127 }); 128 if (num === 0) throw new Error('Cannot calculate variance of an empty array'); 129 var mean = divide(sum, num); // calculate the variance 130 131 sum = undefined; 132 (0, _collection.deepForEach)(array, function (value) { 133 var diff = subtract(value, mean); 134 sum = sum === undefined ? multiply(diff, diff) : add(sum, multiply(diff, diff)); 135 }); 136 137 if (isNaN(sum)) { 138 return sum; 139 } 140 141 switch (normalization) { 142 case 'uncorrected': 143 return divide(sum, num); 144 145 case 'biased': 146 return divide(sum, num + 1); 147 148 case 'unbiased': 149 { 150 var zero = (0, _is.isBigNumber)(sum) ? sum.mul(0) : 0; 151 return num === 1 ? zero : divide(sum, num - 1); 152 } 153 154 default: 155 throw new Error('Unknown normalization "' + normalization + '". ' + 'Choose "unbiased" (default), "uncorrected", or "biased".'); 156 } 157 } 158 159 function _varDim(array, dim, normalization) { 160 try { 161 if (array.length === 0) { 162 throw new SyntaxError('Function variance requires one or more parameters (0 provided)'); 163 } 164 165 return apply(array, dim, function (x) { 166 return _var(x, normalization); 167 }); 168 } catch (err) { 169 throw (0, _improveErrorMessage.improveErrorMessage)(err, 'variance'); 170 } 171 } 172 }); 173 exports.createVariance = createVariance;