std.js (3760B)
1 "use strict"; 2 3 Object.defineProperty(exports, "__esModule", { 4 value: true 5 }); 6 exports.createStd = void 0; 7 8 var _factory = require("../../utils/factory.js"); 9 10 var name = 'std'; 11 var dependencies = ['typed', 'sqrt', 'variance']; 12 var createStd = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { 13 var typed = _ref.typed, 14 sqrt = _ref.sqrt, 15 variance = _ref.variance; 16 17 /** 18 * Compute the standard deviation of a matrix or a list with values. 19 * The standard deviations is defined as the square root of the variance: 20 * `std(A) = sqrt(variance(A))`. 21 * In case of a (multi dimensional) array or matrix, the standard deviation 22 * over all elements will be calculated by default, unless an axis is specified 23 * in which case the standard deviation will be computed along that axis. 24 * 25 * Additionally, it is possible to compute the standard deviation along the rows 26 * or columns of a matrix by specifying the dimension as the second argument. 27 * 28 * Optionally, the type of normalization can be specified as the final 29 * parameter. The parameter `normalization` can be one of the following values: 30 * 31 * - 'unbiased' (default) The sum of squared errors is divided by (n - 1) 32 * - 'uncorrected' The sum of squared errors is divided by n 33 * - 'biased' The sum of squared errors is divided by (n + 1) 34 * 35 * 36 * Syntax: 37 * 38 * math.std(a, b, c, ...) 39 * math.std(A) 40 * math.std(A, normalization) 41 * math.std(A, dimension) 42 * math.std(A, dimension, normalization) 43 * 44 * Examples: 45 * 46 * math.std(2, 4, 6) // returns 2 47 * math.std([2, 4, 6, 8]) // returns 2.581988897471611 48 * math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979 49 * math.std([2, 4, 6, 8], 'biased') // returns 2 50 * 51 * math.std([[1, 2, 3], [4, 5, 6]]) // returns 1.8708286933869707 52 * math.std([[1, 2, 3], [4, 6, 8]], 0) // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378] 53 * math.std([[1, 2, 3], [4, 6, 8]], 1) // returns [1, 2] 54 * math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951] 55 * 56 * See also: 57 * 58 * mean, median, max, min, prod, sum, variance 59 * 60 * @param {Array | Matrix} array 61 * A single matrix or or multiple scalar values 62 * @param {string} [normalization='unbiased'] 63 * Determines how to normalize the variance. 64 * Choose 'unbiased' (default), 'uncorrected', or 'biased'. 65 * @param dimension {number | BigNumber} 66 * Determines the axis to compute the standard deviation for a matrix 67 * @return {*} The standard deviation 68 */ 69 return typed(name, { 70 // std([a, b, c, d, ...]) 71 'Array | Matrix': _std, 72 // std([a, b, c, d, ...], normalization) 73 'Array | Matrix, string': _std, 74 // std([a, b, c, c, ...], dim) 75 'Array | Matrix, number | BigNumber': _std, 76 // std([a, b, c, c, ...], dim, normalization) 77 'Array | Matrix, number | BigNumber, string': _std, 78 // std(a, b, c, d, ...) 79 '...': function _(args) { 80 return _std(args); 81 } 82 }); 83 84 function _std(array, normalization) { 85 if (array.length === 0) { 86 throw new SyntaxError('Function std requires one or more parameters (0 provided)'); 87 } 88 89 try { 90 return sqrt(variance.apply(null, arguments)); 91 } catch (err) { 92 if (err instanceof TypeError && err.message.indexOf(' variance') !== -1) { 93 throw new TypeError(err.message.replace(' variance', ' std')); 94 } else { 95 throw err; 96 } 97 } 98 } 99 }); 100 exports.createStd = createStd;