gamma.js (4059B)
1 "use strict"; 2 3 Object.defineProperty(exports, "__esModule", { 4 value: true 5 }); 6 exports.createGamma = void 0; 7 8 var _collection = require("../../utils/collection.js"); 9 10 var _factory = require("../../utils/factory.js"); 11 12 var _index = require("../../plain/number/index.js"); 13 14 var name = 'gamma'; 15 var dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex']; 16 var createGamma = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { 17 var typed = _ref.typed, 18 config = _ref.config, 19 multiplyScalar = _ref.multiplyScalar, 20 pow = _ref.pow, 21 _BigNumber = _ref.BigNumber, 22 _Complex = _ref.Complex; 23 24 /** 25 * Compute the gamma function of a value using Lanczos approximation for 26 * small values, and an extended Stirling approximation for large values. 27 * 28 * For matrices, the function is evaluated element wise. 29 * 30 * Syntax: 31 * 32 * math.gamma(n) 33 * 34 * Examples: 35 * 36 * math.gamma(5) // returns 24 37 * math.gamma(-0.5) // returns -3.5449077018110335 38 * math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i 39 * 40 * See also: 41 * 42 * combinations, factorial, permutations 43 * 44 * @param {number | Array | Matrix} n A real or complex number 45 * @return {number | Array | Matrix} The gamma of `n` 46 */ 47 return typed(name, { 48 number: _index.gammaNumber, 49 Complex: function Complex(n) { 50 if (n.im === 0) { 51 return this(n.re); 52 } // Lanczos approximation doesn't work well with real part lower than 0.5 53 // So reflection formula is required 54 55 56 if (n.re < 0.5) { 57 // Euler's reflection formula 58 // gamma(1-z) * gamma(z) = PI / sin(PI * z) 59 // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined] 60 // thanks to imperfect sin implementation sin(PI * n) != 0 61 // we can safely use it anyway 62 var _t = new _Complex(1 - n.re, -n.im); 63 64 var r = new _Complex(Math.PI * n.re, Math.PI * n.im); 65 return new _Complex(Math.PI).div(r.sin()).div(this(_t)); 66 } // Lanczos approximation 67 // z -= 1 68 69 70 n = new _Complex(n.re - 1, n.im); // x = gammaPval[0] 71 72 var x = new _Complex(_index.gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP): 73 74 for (var i = 1; i < _index.gammaP.length; ++i) { 75 // x += gammaPval / (z + i) 76 var gammaPval = new _Complex(_index.gammaP[i], 0); 77 x = x.add(gammaPval.div(n.add(i))); 78 } // t = z + gammaG + 0.5 79 80 81 var t = new _Complex(n.re + _index.gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x 82 83 var twoPiSqrt = Math.sqrt(2 * Math.PI); 84 var tpow = t.pow(n.add(0.5)); 85 var expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)] 86 87 return x.mul(twoPiSqrt).mul(tpow).mul(expt); 88 }, 89 BigNumber: function BigNumber(n) { 90 if (n.isInteger()) { 91 return n.isNegative() || n.isZero() ? new _BigNumber(Infinity) : bigFactorial(n.minus(1)); 92 } 93 94 if (!n.isFinite()) { 95 return new _BigNumber(n.isNegative() ? NaN : Infinity); 96 } 97 98 throw new Error('Integer BigNumber expected'); 99 }, 100 'Array | Matrix': function ArrayMatrix(n) { 101 return (0, _collection.deepMap)(n, this); 102 } 103 }); 104 /** 105 * Calculate factorial for a BigNumber 106 * @param {BigNumber} n 107 * @returns {BigNumber} Returns the factorial of n 108 */ 109 110 function bigFactorial(n) { 111 if (n < 8) { 112 return new _BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]); 113 } 114 115 var precision = config.precision + (Math.log(n.toNumber()) | 0); 116 117 var Big = _BigNumber.clone({ 118 precision: precision 119 }); 120 121 if (n % 2 === 1) { 122 return n.times(bigFactorial(new _BigNumber(n - 1))); 123 } 124 125 var p = n; 126 var prod = new Big(n); 127 var sum = n.toNumber(); 128 129 while (p > 2) { 130 p -= 2; 131 sum += p; 132 prod = prod.times(sum); 133 } 134 135 return new _BigNumber(prod.toPrecision(_BigNumber.precision)); 136 } 137 }); 138 exports.createGamma = createGamma;