simple-squiggle

A restricted subset of Squiggle
Log | Files | Refs | README

csSpsolve.js (3078B)


      1 "use strict";
      2 
      3 Object.defineProperty(exports, "__esModule", {
      4   value: true
      5 });
      6 exports.createCsSpsolve = void 0;
      7 
      8 var _csReach = require("./csReach.js");
      9 
     10 var _factory = require("../../../utils/factory.js");
     11 
     12 var name = 'csSpsolve';
     13 var dependencies = ['divideScalar', 'multiply', 'subtract'];
     14 var createCsSpsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) {
     15   var divideScalar = _ref.divideScalar,
     16       multiply = _ref.multiply,
     17       subtract = _ref.subtract;
     18 
     19   /**
     20    * The function csSpsolve() computes the solution to G * x = bk, where bk is the
     21    * kth column of B. When lo is true, the function assumes G = L is lower triangular with the
     22    * diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
     23    * is upper triangular with the diagonal entry as the last entry in each column.
     24    *
     25    * @param {Matrix}  g               The G matrix
     26    * @param {Matrix}  b               The B matrix
     27    * @param {Number}  k               The kth column in B
     28    * @param {Array}   xi              The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
     29    *                                  The first n entries is the nonzero pattern, the last n entries is the stack
     30    * @param {Array}   x               The soluton to the linear system G * x = b
     31    * @param {Array}   pinv            The inverse row permutation vector, must be null for L * x = b
     32    * @param {boolean} lo              The lower (true) upper triangular (false) flag
     33    *
     34    * @return {Number}                 The index for the nonzero pattern
     35    *
     36    * Reference: http://faculty.cse.tamu.edu/davis/publications.html
     37    */
     38   return function csSpsolve(g, b, k, xi, x, pinv, lo) {
     39     // g arrays
     40     var gvalues = g._values;
     41     var gindex = g._index;
     42     var gptr = g._ptr;
     43     var gsize = g._size; // columns
     44 
     45     var n = gsize[1]; // b arrays
     46 
     47     var bvalues = b._values;
     48     var bindex = b._index;
     49     var bptr = b._ptr; // vars
     50 
     51     var p, p0, p1, q; // xi[top..n-1] = csReach(B(:,k))
     52 
     53     var top = (0, _csReach.csReach)(g, b, k, xi, pinv); // clear x
     54 
     55     for (p = top; p < n; p++) {
     56       x[xi[p]] = 0;
     57     } // scatter b
     58 
     59 
     60     for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
     61       x[bindex[p]] = bvalues[p];
     62     } // loop columns
     63 
     64 
     65     for (var px = top; px < n; px++) {
     66       // x array index for px
     67       var j = xi[px]; // apply permutation vector (U x = b), j maps to column J of G
     68 
     69       var J = pinv ? pinv[j] : j; // check column J is empty
     70 
     71       if (J < 0) {
     72         continue;
     73       } // column value indeces in G, p0 <= p < p1
     74 
     75 
     76       p0 = gptr[J];
     77       p1 = gptr[J + 1]; // x(j) /= G(j,j)
     78 
     79       x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]); // first entry L(j,j)
     80 
     81       p = lo ? p0 + 1 : p0;
     82       q = lo ? p1 : p1 - 1; // loop
     83 
     84       for (; p < q; p++) {
     85         // row
     86         var i = gindex[p]; // x(i) -= G(i,j) * x(j)
     87 
     88         x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
     89       }
     90     } // return top of stack
     91 
     92 
     93     return top;
     94   };
     95 });
     96 exports.createCsSpsolve = createCsSpsolve;