csChol.js (4198B)
1 "use strict"; 2 3 Object.defineProperty(exports, "__esModule", { 4 value: true 5 }); 6 exports.createCsChol = void 0; 7 8 var _factory = require("../../../utils/factory.js"); 9 10 var _csEreach = require("./csEreach.js"); 11 12 var _csSymperm = require("./csSymperm.js"); 13 14 var name = 'csChol'; 15 var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix']; 16 var createCsChol = /* #__PURE__ */(0, _factory.factory)(name, dependencies, function (_ref) { 17 var divideScalar = _ref.divideScalar, 18 sqrt = _ref.sqrt, 19 subtract = _ref.subtract, 20 multiply = _ref.multiply, 21 im = _ref.im, 22 re = _ref.re, 23 conj = _ref.conj, 24 equal = _ref.equal, 25 smallerEq = _ref.smallerEq, 26 SparseMatrix = _ref.SparseMatrix; 27 var csSymperm = (0, _csSymperm.createCsSymperm)({ 28 conj: conj, 29 SparseMatrix: SparseMatrix 30 }); 31 /** 32 * Computes the Cholesky factorization of matrix A. It computes L and P so 33 * L * L' = P * A * P' 34 * 35 * @param {Matrix} m The A Matrix to factorize, only upper triangular part used 36 * @param {Object} s The symbolic analysis from cs_schol() 37 * 38 * @return {Number} The numeric Cholesky factorization of A or null 39 * 40 * Reference: http://faculty.cse.tamu.edu/davis/publications.html 41 */ 42 43 return function csChol(m, s) { 44 // validate input 45 if (!m) { 46 return null; 47 } // m arrays 48 49 50 var size = m._size; // columns 51 52 var n = size[1]; // symbolic analysis result 53 54 var parent = s.parent; 55 var cp = s.cp; 56 var pinv = s.pinv; // L arrays 57 58 var lvalues = []; 59 var lindex = []; 60 var lptr = []; // L 61 62 var L = new SparseMatrix({ 63 values: lvalues, 64 index: lindex, 65 ptr: lptr, 66 size: [n, n] 67 }); // vars 68 69 var c = []; // (2 * n) 70 71 var x = []; // (n) 72 // compute C = P * A * P' 73 74 var cm = pinv ? csSymperm(m, pinv, 1) : m; // C matrix arrays 75 76 var cvalues = cm._values; 77 var cindex = cm._index; 78 var cptr = cm._ptr; // vars 79 80 var k, p; // initialize variables 81 82 for (k = 0; k < n; k++) { 83 lptr[k] = c[k] = cp[k]; 84 } // compute L(k,:) for L*L' = C 85 86 87 for (k = 0; k < n; k++) { 88 // nonzero pattern of L(k,:) 89 var top = (0, _csEreach.csEreach)(cm, k, parent, c); // x (0:k) is now zero 90 91 x[k] = 0; // x = full(triu(C(:,k))) 92 93 for (p = cptr[k]; p < cptr[k + 1]; p++) { 94 if (cindex[p] <= k) { 95 x[cindex[p]] = cvalues[p]; 96 } 97 } // d = C(k,k) 98 99 100 var d = x[k]; // clear x for k+1st iteration 101 102 x[k] = 0; // solve L(0:k-1,0:k-1) * x = C(:,k) 103 104 for (; top < n; top++) { 105 // s[top..n-1] is pattern of L(k,:) 106 var i = s[top]; // L(k,i) = x (i) / L(i,i) 107 108 var lki = divideScalar(x[i], lvalues[lptr[i]]); // clear x for k+1st iteration 109 110 x[i] = 0; 111 112 for (p = lptr[i] + 1; p < c[i]; p++) { 113 // row 114 var r = lindex[p]; // update x[r] 115 116 x[r] = subtract(x[r], multiply(lvalues[p], lki)); 117 } // d = d - L(k,i)*L(k,i) 118 119 120 d = subtract(d, multiply(lki, conj(lki))); 121 p = c[i]++; // store L(k,i) in column i 122 123 lindex[p] = k; 124 lvalues[p] = conj(lki); 125 } // compute L(k,k) 126 127 128 if (smallerEq(re(d), 0) || !equal(im(d), 0)) { 129 // not pos def 130 return null; 131 } 132 133 p = c[k]++; // store L(k,k) = sqrt(d) in column k 134 135 lindex[p] = k; 136 lvalues[p] = sqrt(d); 137 } // finalize L 138 139 140 lptr[n] = cp[n]; // P matrix 141 142 var P; // check we need to calculate P 143 144 if (pinv) { 145 // P arrays 146 var pvalues = []; 147 var pindex = []; 148 var pptr = []; // create P matrix 149 150 for (p = 0; p < n; p++) { 151 // initialize ptr (one value per column) 152 pptr[p] = p; // index (apply permutation vector) 153 154 pindex.push(pinv[p]); // value 1 155 156 pvalues.push(1); 157 } // update ptr 158 159 160 pptr[n] = n; // P 161 162 P = new SparseMatrix({ 163 values: pvalues, 164 index: pindex, 165 ptr: pptr, 166 size: [n, n] 167 }); 168 } // return L & P 169 170 171 return { 172 L: L, 173 P: P 174 }; 175 }; 176 }); 177 exports.createCsChol = createCsChol;