simple-squiggle

A restricted subset of Squiggle
Log | Files | Refs | README

std.md (2361B)


      1 <!-- Note: This file is automatically generated from source code comments. Changes made in this file will be overridden. -->
      2 
      3 # Function std
      4 
      5 Compute the standard deviation of a matrix or a  list with values.
      6 The standard deviations is defined as the square root of the variance:
      7 `std(A) = sqrt(variance(A))`.
      8 In case of a (multi dimensional) array or matrix, the standard deviation
      9 over all elements will be calculated by default, unless an axis is specified
     10 in which case the standard deviation will be computed along that axis.
     11 
     12 Additionally, it is possible to compute the standard deviation along the rows
     13 or columns of a matrix by specifying the dimension as the second argument.
     14 
     15 Optionally, the type of normalization can be specified as the final
     16 parameter. The parameter `normalization` can be one of the following values:
     17 
     18 - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
     19 - 'uncorrected'        The sum of squared errors is divided by n
     20 - 'biased'             The sum of squared errors is divided by (n + 1)
     21 
     22 
     23 ## Syntax
     24 
     25 ```js
     26 math.std(a, b, c, ...)
     27 math.std(A)
     28 math.std(A, normalization)
     29 math.std(A, dimension)
     30 math.std(A, dimension, normalization)
     31 ```
     32 
     33 ### Parameters
     34 
     35 Parameter | Type | Description
     36 --------- | ---- | -----------
     37 `array` | Array &#124; Matrix |  A single matrix or or multiple scalar values
     38 `normalization` | string |  Determines how to normalize the variance. Choose 'unbiased' (default), 'uncorrected', or 'biased'. Default value: 'unbiased'.
     39 
     40 ### Returns
     41 
     42 Type | Description
     43 ---- | -----------
     44 * | The standard deviation
     45 
     46 
     47 ### Throws
     48 
     49 Type | Description
     50 ---- | -----------
     51 
     52 
     53 ## Examples
     54 
     55 ```js
     56 math.std(2, 4, 6)                     // returns 2
     57 math.std([2, 4, 6, 8])                // returns 2.581988897471611
     58 math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
     59 math.std([2, 4, 6, 8], 'biased')      // returns 2
     60 
     61 math.std([[1, 2, 3], [4, 5, 6]])      // returns 1.8708286933869707
     62 math.std([[1, 2, 3], [4, 6, 8]], 0)    // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
     63 math.std([[1, 2, 3], [4, 6, 8]], 1)    // returns [1, 2]
     64 math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
     65 ```
     66 
     67 
     68 ## See also
     69 
     70 [mean](mean.md),
     71 [median](median.md),
     72 [max](max.md),
     73 [min](min.md),
     74 [prod](prod.md),
     75 [sum](sum.md),
     76 [variance](variance.md)