simple-squiggle

A restricted subset of Squiggle
Log | Files | Refs | README

fraction.js (20692B)


      1 /**
      2  * @license Fraction.js v4.2.0 05/03/2022
      3  * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
      4  *
      5  * Copyright (c) 2021, Robert Eisele (robert@xarg.org)
      6  * Dual licensed under the MIT or GPL Version 2 licenses.
      7  **/
      8 
      9 
     10 /**
     11  *
     12  * This class offers the possibility to calculate fractions.
     13  * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
     14  *
     15  * Array/Object form
     16  * [ 0 => <nominator>, 1 => <denominator> ]
     17  * [ n => <nominator>, d => <denominator> ]
     18  *
     19  * Integer form
     20  * - Single integer value
     21  *
     22  * Double form
     23  * - Single double value
     24  *
     25  * String form
     26  * 123.456 - a simple double
     27  * 123/456 - a string fraction
     28  * 123.'456' - a double with repeating decimal places
     29  * 123.(456) - synonym
     30  * 123.45'6' - a double with repeating last place
     31  * 123.45(6) - synonym
     32  *
     33  * Example:
     34  *
     35  * var f = new Fraction("9.4'31'");
     36  * f.mul([-4, 3]).div(4.9);
     37  *
     38  */
     39 
     40 (function(root) {
     41 
     42   "use strict";
     43 
     44   // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
     45   // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
     46   // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
     47   var MAX_CYCLE_LEN = 2000;
     48 
     49   // Parsed data to avoid calling "new" all the time
     50   var P = {
     51     "s": 1,
     52     "n": 0,
     53     "d": 1
     54   };
     55 
     56   function assign(n, s) {
     57 
     58     if (isNaN(n = parseInt(n, 10))) {
     59       throw Fraction['InvalidParameter'];
     60     }
     61     return n * s;
     62   }
     63 
     64   // Creates a new Fraction internally without the need of the bulky constructor
     65   function newFraction(n, d) {
     66 
     67     if (d === 0) {
     68       throw Fraction['DivisionByZero'];
     69     }
     70 
     71     var f = Object.create(Fraction.prototype);
     72     f["s"] = n < 0 ? -1 : 1;
     73 
     74     n = n < 0 ? -n : n;
     75 
     76     var a = gcd(n, d);
     77 
     78     f["n"] = n / a;
     79     f["d"] = d / a;
     80     return f;
     81   }
     82 
     83   function factorize(num) {
     84 
     85     var factors = {};
     86 
     87     var n = num;
     88     var i = 2;
     89     var s = 4;
     90 
     91     while (s <= n) {
     92 
     93       while (n % i === 0) {
     94         n/= i;
     95         factors[i] = (factors[i] || 0) + 1;
     96       }
     97       s+= 1 + 2 * i++;
     98     }
     99 
    100     if (n !== num) {
    101       if (n > 1)
    102         factors[n] = (factors[n] || 0) + 1;
    103     } else {
    104       factors[num] = (factors[num] || 0) + 1;
    105     }
    106     return factors;
    107   }
    108 
    109   var parse = function(p1, p2) {
    110 
    111     var n = 0, d = 1, s = 1;
    112     var v = 0, w = 0, x = 0, y = 1, z = 1;
    113 
    114     var A = 0, B = 1;
    115     var C = 1, D = 1;
    116 
    117     var N = 10000000;
    118     var M;
    119 
    120     if (p1 === undefined || p1 === null) {
    121       /* void */
    122     } else if (p2 !== undefined) {
    123       n = p1;
    124       d = p2;
    125       s = n * d;
    126 
    127       if (n % 1 !== 0 || d % 1 !== 0) {
    128         throw Fraction['NonIntegerParameter'];
    129       }
    130 
    131     } else
    132       switch (typeof p1) {
    133 
    134         case "object":
    135           {
    136             if ("d" in p1 && "n" in p1) {
    137               n = p1["n"];
    138               d = p1["d"];
    139               if ("s" in p1)
    140                 n*= p1["s"];
    141             } else if (0 in p1) {
    142               n = p1[0];
    143               if (1 in p1)
    144                 d = p1[1];
    145             } else {
    146               throw Fraction['InvalidParameter'];
    147             }
    148             s = n * d;
    149             break;
    150           }
    151         case "number":
    152           {
    153             if (p1 < 0) {
    154               s = p1;
    155               p1 = -p1;
    156             }
    157 
    158             if (p1 % 1 === 0) {
    159               n = p1;
    160             } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
    161 
    162               if (p1 >= 1) {
    163                 z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
    164                 p1/= z;
    165               }
    166 
    167               // Using Farey Sequences
    168               // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
    169 
    170               while (B <= N && D <= N) {
    171                 M = (A + C) / (B + D);
    172 
    173                 if (p1 === M) {
    174                   if (B + D <= N) {
    175                     n = A + C;
    176                     d = B + D;
    177                   } else if (D > B) {
    178                     n = C;
    179                     d = D;
    180                   } else {
    181                     n = A;
    182                     d = B;
    183                   }
    184                   break;
    185 
    186                 } else {
    187 
    188                   if (p1 > M) {
    189                     A+= C;
    190                     B+= D;
    191                   } else {
    192                     C+= A;
    193                     D+= B;
    194                   }
    195 
    196                   if (B > N) {
    197                     n = C;
    198                     d = D;
    199                   } else {
    200                     n = A;
    201                     d = B;
    202                   }
    203                 }
    204               }
    205               n*= z;
    206             } else if (isNaN(p1) || isNaN(p2)) {
    207               d = n = NaN;
    208             }
    209             break;
    210           }
    211         case "string":
    212           {
    213             B = p1.match(/\d+|./g);
    214 
    215             if (B === null)
    216               throw Fraction['InvalidParameter'];
    217 
    218             if (B[A] === '-') {// Check for minus sign at the beginning
    219               s = -1;
    220               A++;
    221             } else if (B[A] === '+') {// Check for plus sign at the beginning
    222               A++;
    223             }
    224 
    225             if (B.length === A + 1) { // Check if it's just a simple number "1234"
    226               w = assign(B[A++], s);
    227             } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
    228 
    229               if (B[A] !== '.') { // Handle 0.5 and .5
    230                 v = assign(B[A++], s);
    231               }
    232               A++;
    233 
    234               // Check for decimal places
    235               if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
    236                 w = assign(B[A], s);
    237                 y = Math.pow(10, B[A].length);
    238                 A++;
    239               }
    240 
    241               // Check for repeating places
    242               if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
    243                 x = assign(B[A + 1], s);
    244                 z = Math.pow(10, B[A + 1].length) - 1;
    245                 A+= 3;
    246               }
    247 
    248             } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
    249               w = assign(B[A], s);
    250               y = assign(B[A + 2], 1);
    251               A+= 3;
    252             } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
    253               v = assign(B[A], s);
    254               w = assign(B[A + 2], s);
    255               y = assign(B[A + 4], 1);
    256               A+= 5;
    257             }
    258 
    259             if (B.length <= A) { // Check for more tokens on the stack
    260               d = y * z;
    261               s = /* void */
    262               n = x + d * v + z * w;
    263               break;
    264             }
    265 
    266             /* Fall through on error */
    267           }
    268         default:
    269           throw Fraction['InvalidParameter'];
    270       }
    271 
    272     if (d === 0) {
    273       throw Fraction['DivisionByZero'];
    274     }
    275 
    276     P["s"] = s < 0 ? -1 : 1;
    277     P["n"] = Math.abs(n);
    278     P["d"] = Math.abs(d);
    279   };
    280 
    281   function modpow(b, e, m) {
    282 
    283     var r = 1;
    284     for (; e > 0; b = (b * b) % m, e >>= 1) {
    285 
    286       if (e & 1) {
    287         r = (r * b) % m;
    288       }
    289     }
    290     return r;
    291   }
    292 
    293 
    294   function cycleLen(n, d) {
    295 
    296     for (; d % 2 === 0;
    297       d/= 2) {
    298     }
    299 
    300     for (; d % 5 === 0;
    301       d/= 5) {
    302     }
    303 
    304     if (d === 1) // Catch non-cyclic numbers
    305       return 0;
    306 
    307     // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
    308     // 10^(d-1) % d == 1
    309     // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
    310     // as we want to translate the numbers to strings.
    311 
    312     var rem = 10 % d;
    313     var t = 1;
    314 
    315     for (; rem !== 1; t++) {
    316       rem = rem * 10 % d;
    317 
    318       if (t > MAX_CYCLE_LEN)
    319         return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
    320     }
    321     return t;
    322   }
    323 
    324 
    325   function cycleStart(n, d, len) {
    326 
    327     var rem1 = 1;
    328     var rem2 = modpow(10, len, d);
    329 
    330     for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
    331       // Solve 10^s == 10^(s+t) (mod d)
    332 
    333       if (rem1 === rem2)
    334         return t;
    335 
    336       rem1 = rem1 * 10 % d;
    337       rem2 = rem2 * 10 % d;
    338     }
    339     return 0;
    340   }
    341 
    342   function gcd(a, b) {
    343 
    344     if (!a)
    345       return b;
    346     if (!b)
    347       return a;
    348 
    349     while (1) {
    350       a%= b;
    351       if (!a)
    352         return b;
    353       b%= a;
    354       if (!b)
    355         return a;
    356     }
    357   };
    358 
    359   /**
    360    * Module constructor
    361    *
    362    * @constructor
    363    * @param {number|Fraction=} a
    364    * @param {number=} b
    365    */
    366   function Fraction(a, b) {
    367 
    368     parse(a, b);
    369 
    370     if (this instanceof Fraction) {
    371       a = gcd(P["d"], P["n"]); // Abuse variable a
    372       this["s"] = P["s"];
    373       this["n"] = P["n"] / a;
    374       this["d"] = P["d"] / a;
    375     } else {
    376       return newFraction(P['s'] * P['n'], P['d']);
    377     }
    378   }
    379 
    380   Fraction['DivisionByZero'] = new Error("Division by Zero");
    381   Fraction['InvalidParameter'] = new Error("Invalid argument");
    382   Fraction['NonIntegerParameter'] = new Error("Parameters must be integer");
    383 
    384   Fraction.prototype = {
    385 
    386     "s": 1,
    387     "n": 0,
    388     "d": 1,
    389 
    390     /**
    391      * Calculates the absolute value
    392      *
    393      * Ex: new Fraction(-4).abs() => 4
    394      **/
    395     "abs": function() {
    396 
    397       return newFraction(this["n"], this["d"]);
    398     },
    399 
    400     /**
    401      * Inverts the sign of the current fraction
    402      *
    403      * Ex: new Fraction(-4).neg() => 4
    404      **/
    405     "neg": function() {
    406 
    407       return newFraction(-this["s"] * this["n"], this["d"]);
    408     },
    409 
    410     /**
    411      * Adds two rational numbers
    412      *
    413      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
    414      **/
    415     "add": function(a, b) {
    416 
    417       parse(a, b);
    418       return newFraction(
    419         this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
    420         this["d"] * P["d"]
    421       );
    422     },
    423 
    424     /**
    425      * Subtracts two rational numbers
    426      *
    427      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
    428      **/
    429     "sub": function(a, b) {
    430 
    431       parse(a, b);
    432       return newFraction(
    433         this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
    434         this["d"] * P["d"]
    435       );
    436     },
    437 
    438     /**
    439      * Multiplies two rational numbers
    440      *
    441      * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
    442      **/
    443     "mul": function(a, b) {
    444 
    445       parse(a, b);
    446       return newFraction(
    447         this["s"] * P["s"] * this["n"] * P["n"],
    448         this["d"] * P["d"]
    449       );
    450     },
    451 
    452     /**
    453      * Divides two rational numbers
    454      *
    455      * Ex: new Fraction("-17.(345)").inverse().div(3)
    456      **/
    457     "div": function(a, b) {
    458 
    459       parse(a, b);
    460       return newFraction(
    461         this["s"] * P["s"] * this["n"] * P["d"],
    462         this["d"] * P["n"]
    463       );
    464     },
    465 
    466     /**
    467      * Clones the actual object
    468      *
    469      * Ex: new Fraction("-17.(345)").clone()
    470      **/
    471     "clone": function() {
    472       return newFraction(this['s'] * this['n'], this['d']);
    473     },
    474 
    475     /**
    476      * Calculates the modulo of two rational numbers - a more precise fmod
    477      *
    478      * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
    479      **/
    480     "mod": function(a, b) {
    481 
    482       if (isNaN(this['n']) || isNaN(this['d'])) {
    483         return new Fraction(NaN);
    484       }
    485 
    486       if (a === undefined) {
    487         return newFraction(this["s"] * this["n"] % this["d"], 1);
    488       }
    489 
    490       parse(a, b);
    491       if (0 === P["n"] && 0 === this["d"]) {
    492         throw Fraction['DivisionByZero'];
    493       }
    494 
    495       /*
    496        * First silly attempt, kinda slow
    497        *
    498        return that["sub"]({
    499        "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
    500        "d": num["d"],
    501        "s": this["s"]
    502        });*/
    503 
    504       /*
    505        * New attempt: a1 / b1 = a2 / b2 * q + r
    506        * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
    507        * => (b2 * a1 % a2 * b1) / (b1 * b2)
    508        */
    509       return newFraction(
    510         this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
    511         P["d"] * this["d"]
    512       );
    513     },
    514 
    515     /**
    516      * Calculates the fractional gcd of two rational numbers
    517      *
    518      * Ex: new Fraction(5,8).gcd(3,7) => 1/56
    519      */
    520     "gcd": function(a, b) {
    521 
    522       parse(a, b);
    523 
    524       // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
    525 
    526       return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
    527     },
    528 
    529     /**
    530      * Calculates the fractional lcm of two rational numbers
    531      *
    532      * Ex: new Fraction(5,8).lcm(3,7) => 15
    533      */
    534     "lcm": function(a, b) {
    535 
    536       parse(a, b);
    537 
    538       // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
    539 
    540       if (P["n"] === 0 && this["n"] === 0) {
    541         return newFraction(0, 1);
    542       }
    543       return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
    544     },
    545 
    546     /**
    547      * Calculates the ceil of a rational number
    548      *
    549      * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
    550      **/
    551     "ceil": function(places) {
    552 
    553       places = Math.pow(10, places || 0);
    554 
    555       if (isNaN(this["n"]) || isNaN(this["d"])) {
    556         return new Fraction(NaN);
    557       }
    558       return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
    559     },
    560 
    561     /**
    562      * Calculates the floor of a rational number
    563      *
    564      * Ex: new Fraction('4.(3)').floor() => (4 / 1)
    565      **/
    566     "floor": function(places) {
    567 
    568       places = Math.pow(10, places || 0);
    569 
    570       if (isNaN(this["n"]) || isNaN(this["d"])) {
    571         return new Fraction(NaN);
    572       }
    573       return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
    574     },
    575 
    576     /**
    577      * Rounds a rational numbers
    578      *
    579      * Ex: new Fraction('4.(3)').round() => (4 / 1)
    580      **/
    581     "round": function(places) {
    582 
    583       places = Math.pow(10, places || 0);
    584 
    585       if (isNaN(this["n"]) || isNaN(this["d"])) {
    586         return new Fraction(NaN);
    587       }
    588       return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
    589     },
    590 
    591     /**
    592      * Gets the inverse of the fraction, means numerator and denominator are exchanged
    593      *
    594      * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
    595      **/
    596     "inverse": function() {
    597 
    598       return newFraction(this["s"] * this["d"], this["n"]);
    599     },
    600 
    601     /**
    602      * Calculates the fraction to some rational exponent, if possible
    603      *
    604      * Ex: new Fraction(-1,2).pow(-3) => -8
    605      */
    606     "pow": function(a, b) {
    607 
    608       parse(a, b);
    609 
    610       // Trivial case when exp is an integer
    611 
    612       if (P['d'] === 1) {
    613 
    614         if (P['s'] < 0) {
    615           return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
    616         } else {
    617           return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
    618         }
    619       }
    620 
    621       // Negative roots become complex
    622       //     (-a/b)^(c/d) = x
    623       // <=> (-1)^(c/d) * (a/b)^(c/d) = x
    624       // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x         # rotate 1 by 180°
    625       // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
    626       // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
    627       if (this['s'] < 0) return null;
    628 
    629       // Now prime factor n and d
    630       var N = factorize(this['n']);
    631       var D = factorize(this['d']);
    632 
    633       // Exponentiate and take root for n and d individually
    634       var n = 1;
    635       var d = 1;
    636       for (var k in N) {
    637         if (k === '1') continue;
    638         if (k === '0') {
    639           n = 0;
    640           break;
    641         }
    642         N[k]*= P['n'];
    643 
    644         if (N[k] % P['d'] === 0) {
    645           N[k]/= P['d'];
    646         } else return null;
    647         n*= Math.pow(k, N[k]);
    648       }
    649 
    650       for (var k in D) {
    651         if (k === '1') continue;
    652         D[k]*= P['n'];
    653 
    654         if (D[k] % P['d'] === 0) {
    655           D[k]/= P['d'];
    656         } else return null;
    657         d*= Math.pow(k, D[k]);
    658       }
    659 
    660       if (P['s'] < 0) {
    661         return newFraction(d, n);
    662       }
    663       return newFraction(n, d);
    664     },
    665 
    666     /**
    667      * Check if two rational numbers are the same
    668      *
    669      * Ex: new Fraction(19.6).equals([98, 5]);
    670      **/
    671     "equals": function(a, b) {
    672 
    673       parse(a, b);
    674       return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
    675     },
    676 
    677     /**
    678      * Check if two rational numbers are the same
    679      *
    680      * Ex: new Fraction(19.6).equals([98, 5]);
    681      **/
    682     "compare": function(a, b) {
    683 
    684       parse(a, b);
    685       var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
    686       return (0 < t) - (t < 0);
    687     },
    688 
    689     "simplify": function(eps) {
    690 
    691       if (isNaN(this['n']) || isNaN(this['d'])) {
    692         return this;
    693       }
    694 
    695       eps = eps || 0.001;
    696 
    697       var thisABS = this['abs']();
    698       var cont = thisABS['toContinued']();
    699 
    700       for (var i = 1; i < cont.length; i++) {
    701 
    702         var s = newFraction(cont[i - 1], 1);
    703         for (var k = i - 2; k >= 0; k--) {
    704           s = s['inverse']()['add'](cont[k]);
    705         }
    706 
    707         if (s['sub'](thisABS)['abs']().valueOf() < eps) {
    708           return s['mul'](this['s']);
    709         }
    710       }
    711       return this;
    712     },
    713 
    714     /**
    715      * Check if two rational numbers are divisible
    716      *
    717      * Ex: new Fraction(19.6).divisible(1.5);
    718      */
    719     "divisible": function(a, b) {
    720 
    721       parse(a, b);
    722       return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
    723     },
    724 
    725     /**
    726      * Returns a decimal representation of the fraction
    727      *
    728      * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
    729      **/
    730     'valueOf': function() {
    731 
    732       return this["s"] * this["n"] / this["d"];
    733     },
    734 
    735     /**
    736      * Returns a string-fraction representation of a Fraction object
    737      *
    738      * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
    739      **/
    740     'toFraction': function(excludeWhole) {
    741 
    742       var whole, str = "";
    743       var n = this["n"];
    744       var d = this["d"];
    745       if (this["s"] < 0) {
    746         str+= '-';
    747       }
    748 
    749       if (d === 1) {
    750         str+= n;
    751       } else {
    752 
    753         if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
    754           str+= whole;
    755           str+= " ";
    756           n%= d;
    757         }
    758 
    759         str+= n;
    760         str+= '/';
    761         str+= d;
    762       }
    763       return str;
    764     },
    765 
    766     /**
    767      * Returns a latex representation of a Fraction object
    768      *
    769      * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
    770      **/
    771     'toLatex': function(excludeWhole) {
    772 
    773       var whole, str = "";
    774       var n = this["n"];
    775       var d = this["d"];
    776       if (this["s"] < 0) {
    777         str+= '-';
    778       }
    779 
    780       if (d === 1) {
    781         str+= n;
    782       } else {
    783 
    784         if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
    785           str+= whole;
    786           n%= d;
    787         }
    788 
    789         str+= "\\frac{";
    790         str+= n;
    791         str+= '}{';
    792         str+= d;
    793         str+= '}';
    794       }
    795       return str;
    796     },
    797 
    798     /**
    799      * Returns an array of continued fraction elements
    800      *
    801      * Ex: new Fraction("7/8").toContinued() => [0,1,7]
    802      */
    803     'toContinued': function() {
    804 
    805       var t;
    806       var a = this['n'];
    807       var b = this['d'];
    808       var res = [];
    809 
    810       if (isNaN(a) || isNaN(b)) {
    811         return res;
    812       }
    813 
    814       do {
    815         res.push(Math.floor(a / b));
    816         t = a % b;
    817         a = b;
    818         b = t;
    819       } while (a !== 1);
    820 
    821       return res;
    822     },
    823 
    824     /**
    825      * Creates a string representation of a fraction with all digits
    826      *
    827      * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
    828      **/
    829     'toString': function(dec) {
    830 
    831       var N = this["n"];
    832       var D = this["d"];
    833 
    834       if (isNaN(N) || isNaN(D)) {
    835         return "NaN";
    836       }
    837 
    838       dec = dec || 15; // 15 = decimal places when no repetation
    839 
    840       var cycLen = cycleLen(N, D); // Cycle length
    841       var cycOff = cycleStart(N, D, cycLen); // Cycle start
    842 
    843       var str = this['s'] < 0 ? "-" : "";
    844 
    845       str+= N / D | 0;
    846 
    847       N%= D;
    848       N*= 10;
    849 
    850       if (N)
    851         str+= ".";
    852 
    853       if (cycLen) {
    854 
    855         for (var i = cycOff; i--;) {
    856           str+= N / D | 0;
    857           N%= D;
    858           N*= 10;
    859         }
    860         str+= "(";
    861         for (var i = cycLen; i--;) {
    862           str+= N / D | 0;
    863           N%= D;
    864           N*= 10;
    865         }
    866         str+= ")";
    867       } else {
    868         for (var i = dec; N && i--;) {
    869           str+= N / D | 0;
    870           N%= D;
    871           N*= 10;
    872         }
    873       }
    874       return str;
    875     }
    876   };
    877 
    878   if (typeof define === "function" && define["amd"]) {
    879     define([], function() {
    880       return Fraction;
    881     });
    882   } else if (typeof exports === "object") {
    883     Object.defineProperty(Fraction, "__esModule", { 'value': true });
    884     Fraction['default'] = Fraction;
    885     Fraction['Fraction'] = Fraction;
    886     module['exports'] = Fraction;
    887   } else {
    888     root['Fraction'] = Fraction;
    889   }
    890 
    891 })(this);